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ABSTRACT OF DISSERTATION

A Polynomial Primal-Dual Interior Point Method

for Convex Programming With Quadratic Constraints

by

Lee James Lehmkuhl

Captain, United States Air Force

Doctor of Science in Operations Research

The George Washington University

This study involves the solution of a convex nonlinear programming problem using a primal-duMi

interior point algorithm. The problem is to minimize bTx subject to gi(x) " 0, iz1 to m, where each

9i(x) is a concave quadratic fhmetion. We specify certain common regularity conditions to guarantee the

existence of a solution x* and a vector of KKT multipliers u* > 0 such that (x*, u*) solves the

associated Wolfe dual. The algorithm is motivated by the following optimality conditions, given a fixed

parameter i > 0, for x and u such that gi(x) > 0 and ui > 0, i - 1, ., m:

VL(x,u) -- b > u;Vgi(x) 0
i=1

uMgA(x) - 0 p ,izl,. .. ,m.

The algorithm uses Newton's method to approximately solve these equations for a decreasing sequence

{lk} where 1 kj 0 as k -* + oo. A step size procedure maintains feasibility and seeks to decrease some

merit function.

The Newton direction obtained has several interesting features. The direction in the primal

variable x is closely related to the Newton direction generated by a Sequential UTiconstrained

Minimization Technique employing the logarithmic barrier function (SUMT). In fact, the primal

direction ,an be viewed as a SUMT Newton direction with a perturbed barrier function Hessian matrix.

The perturbation depends on the degree to which uigi(x) - :- 0, or perturbed complementary

slackness (PCS), is violated for each i. If the deviation from PCS is assmned to be small, the primal

direction is (lose enough to the SUMT N,.wton dir,.tion that. it may be used as the search dir,'ttion in

a SITMT algorithm. The resulting primal variable algorithm retains the polynomial computational

complexity shown for SITMT.

The Newton direction in the dual variables generated by the primal-dual algorithm is also studied.

A modification to the dual step size and direction allows the progress in reducing PCS at each iteration

to be calculated and therefore controlled. This control allows the deviation from PC(.S to be kept sniall



throughout the primal-dual algorithm's progress, and thus the polynomial complexity shown for the

primal variable algorithm discussed above follows for the primal-dual algorithm.
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The algorithm uses Newton's method to approximately solve these equations for a decreasing sequence
{ pk} where pk1 0 as k -* + oo. A step size procedure maintains feasibility and seeks to decrease some

merit function.

The Newton direction obtained has several interesting features. The direction in the primal

variable x is closely related to the Newton direction generated by a Sequential Unconstrained

Minimization Technique employing the logarithmic barrier function (SUMT). In fact, the primal

direction can be viewed as a SUMT Newton direction with a perturbed barrier function Hessian matrix.

The perturbation depends on the degree to which uigi(x) - p :: 0, or perturbed complementary

slackness (PCS), is violated for each i. If the deviation from PCS is assumed to be small, the primal

direction is close enough to the SUMT Newton direction that it may be used as the search dihection in

a SUMT algorithm. The resulting primal variable algorithm retains the polynomial computational

complexity shown for SUMT.

The Newton direction in the dual variables generated by the primal-dual algorithm is also studied.

A modification to the dual step size and direction allows the progress in reducing PCS at each iteration

to be calculated and therefore controlled. This control allows the deviation from PCS to be kept small
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Abstract

A POLYNOMIAL PRIMAL-DUAL INTERIOR POINT

METHOD FOR CONVEX PROGRAMMING

WITH QUADRATIC CONSTRAINTS

by Lee James Lehinkuhl

Anthony V. Fiacco. Director of Research

This dissertation involves the solution of a convex nonlinear programming

problem using a primal-dual algorithm developed in McCormick( 1991a and 1991b).
The problem is to minimize brx subject to yi(x) > 0. i=I to m. where each gi(x) is

a concave quadratic function. We specify certain common regularity conditions to

guarantee the existence of a solution x* and a vector of KKT multipliers u* > 0

such that (x*, u*) solves the associated Wolfe dual: maximize

L(x.u) = bTx - uigi(x) subject to VL(x,u)=0 and u > 0. The algorithm is
i=1

motivated by the following optimality conditions for the problem stated above,

given a fixed parameter p > 0:

VXL(x.u) = 0

uigi(x) - ja = 0, i1...., m.

The algorithm uses Newton's method to approximately solve these equations for a

decreasing sequence {fzk} where 1 kJ0 as k --+ + oo. A step size procedure maintains

feasibility and seeks to decrease some merit function. The Newton direction is the

iii



negative inverse of the Jacobian matrix of the above equations multiplied by the

vector of the equations.

The Newton direction obtained has several interesting features. The direction

in the primal variable x is closely related to the Newton direction generated by a

Sequential Unconstrained Minimization Technique employing the logarithmic

barrier function (SUMT). In fact, the primal direction can be viewed as a SUMT

Newton direction with a perturbed barrier function Hessian matrix. The

perturbation. that is. the degree to which the primal direction differs from the

SUMT Newton direction depends on the degree to which uigi(x) - /I = 0, or

perturbed complementary slackness (PCS), is violated for each i. If the deviation

from PCS is assumed to be small. the primal direction is close enough to the

SUMT Newton direction that it may be used as the search direction in a SUMT

algorithm. The resultinr primal variable algorithm retains the polynomial

computational complexity shown for SUMT by den Hertog, Roos, and

Terlaky(1990). The Newton direction in the dual variables generated by the

primal-dual algorithm is also studied. This direction seeks to change each dual

variable to adapt to changes in its associated constraint gi(x) as x changes along

the primal Newton direction, and to reduce the violation of PCS at the current

value of x. A modification to the dual step size and direction allows the progress in

reducing PCS at each iteration to be calculated and therefore controlled. This

control allows the deviation from PCS to be kept small throughout the primal-dual

algorithm's progress, and thus the polynomial complexity shown for the primal

variable algorithm discussed above follows for the primal-dual algorithm. Finally,

iv



the effect of the modification also allows the use of the results in Anstreicher(1990)

for quadratic programming with SUMT. These can be applied to show another

proof of polynomiality for linear programming with the modified primal-dual

algorithm.
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CHAPTER I: INTRODUCTION

1.1 Background

Constrained optimization is the process of minimizing (or maximizing) the

value of a function of one or more variables over a set of allowable values for those

variables. The set of allowable values is known as the feasible region. This thesis

presents a method, or algorithm, of constrained optimization for a particular class

of problems. Subsequent chapters contain a rigorous definition of the problem to

be solved, as well as coverage of fundamental theory and related research; but for

introductory purposes a general, non-rigorous background description is in order.

The class of problems considered here requires the minimization of a convex

quadratic function defined over E', known as the objective function. The feasible

region is defined by one or more concave quadratic functions, known as constraints,

in the following manner: the feasible region is the set of those values of x E E'

which cause each constraint to be non-negative. The algorithm moves toward the

solution along a series of points in the interior of the feasible region, that is, the

subset of the feasible region where the constraints are strictly positive; hence the



term "interior point method". The problem structure provides a convex feasible

region, which together with the convex objective function results in a convex

quadratic minimization problem. This class of problems is of significant interest--

for instance, a constraint on the maximum Euclidian distance between two points

may be expressed with a concave quadratic constraint like that mentioned above.

So for example, the minimization of the distance between a number of facilities

subject to constraints on the facilities locations, perhaps within a certain service

area, may be modeled as such a problem.

There are several important classes of problems which conform to this

structure. Perhaps the most common and well-known is the linear program, in

which the objective function is linear and the constraints are linear affine. Another

is the convex quadratic program, with a convex quadratic objective function and

linear affine constraints. Such problems occur in practice and require solution. For

example, linear programming may be used to plan the employment of a limited

arsenal of nuclear weapons to maximize the damage inflicted on a foe, or to

minimize friendly casualties for a given level of destruction. Another application is

the allocation of limited resources (labor, parts, equipment, and so on) within a

factory to maximize profit.

Much research has gone into developing algorithms to solve problems of this

type. Some specialized algorithms apply just to the linear program, and others to

the convex quadratic program. Initially, the main goal in algorithm development

was to guarantee convergence to an optimal value. Then, the speed of convergence

and computational considerations came into focus. Some algorithms which perform

2



well in practice can be shown in a worst case scenario to require a prohibitive

amount of computation effort, while others which possess a more reasonable upper

bound on computational effort may converge so slowly in practice that they prove

useless for solving actual problems. One can thus see the development of two

measures of algorithmic performance. One is the algorithm's speed. in terms of

computer time, in solving a wide variety of test problems. Another is the

theoretical bound on the number of computations required in the worst case to

solve a general problem of a given size. (The measure of problem size will be

discussed later.) In this paper, the algorithm presented will be analyzed for

convergence and a theoretical bound developed on computational requirements.

1.2 Organization of the Dissertation

The dissertation is organized into eight chapters. This introduction is Chapter

I, the remainder of which will be devoted to an overview of the contents of the

subsequent chapters.

Chapter II covers the fundamental concepts of interior point methods and

reviews some current research in the area. The fundamental concepts portion gives

primary emphasis to the logarithmic barrier function and includes a simple

example in E 2 . After a brief discussion of unconstrained minimization with

Newton's method, the chapter introduces the concept of computational complexity

of algorithms. The chapter concludes with a survey of recent developments in

analyzing the computational complexity of various interior point methods.

3



Chapter III begins with the rigorous presentation of the problem to be solved

and the Primal-Dual Algorithm which is the core of this research effort. Several

lemmas show important mathematical properties of the algorithm which will be

used in later analysis.

Chapter IV analyzes the search direction in the primal variables x E En

generated by the Primal-Dual Algorithm, and shows it to be closely related to the

search direction generated by an interior point method based on the logarithmic

barrier function. With careful bounding of the difference between the two

directions, a primal variable algorithm using the Primal-Dual Algorithm primal

variable search direction inherits convergence and polynomial complexity results of

den Hertog, Roos. and Terlaky(1990) for the logarithmic barrier function method.

Chapter V follows the primal variable analysis of Chapter IV with similar

analysis of the dual variable search direction. An attempt is made to show a type

of monotone convergence in the dual variables toward stationarity, but examples

show that such monotonicity may not occur.

Chapter VI develops a modification to the algorithm, resulting in the Modified

Primal-Dual Algorithm, which adjusts the direction and/or magnitude of

movement in the dual variables to produce the monotonicity sought in Chapter V.

Further analysis shows that the Modified Primal-Dual Algorithm inherits the

convergence and complexity results from Chapter IV.

Chapter VII presents an alternative convergence and complexity result for the

4



Modified Primal-Dual Algorithm based on the work of Anstreicher. By applying

the Modified Primal-L .al Algorithm to a linear program with proper initialization,

we show convergence and polynomial complexity precisely as in Anstreicher(1990).

Chapter VIII discusses techniques for meeting the initial feasibility and

centering conditions required by the algorithm.

Chapter IX concludes the dissertation with a summary of key results and

potential areas of future research.

5



CHAPTER II: FUNDAMENTAL CONCEPTS AND RELATED RESEARCH

11.1 Fundamental Concepts

11.1.1 Interior Point Methods

This section will present some basic results for understanding the nature and

use of a barrier function as the foundation for an interior point algorithm. The

material covered is not intended to be all-encompassing. Readers who desire more

detail are referred to Fiacco and McCormick(1968, 1990), from which much of this

discussion is drawn.

An interior point method as employed here is one type of Sequential

Unconstrained Minimization Technique (SUMT). As the name implies, the idea

behind SUMT is solving a series of unconstrained problems, the solutions of which

converge to a solution of a constrained minimization problem. There are a variety

of Sequential Unconstrained Minimization Techniques. Some allow the

unconstrained problems to be solved on the boundary or outside of the feasible

6



region of the original problem, while others maintain strict feasibility. The later

are called interior point methods. Again, a variety of these SUMT interior point

methods exist. We will look at one of the classic types, one where a logarithmic

barrier function is used to enforce feasibility, and a gradual relaxation of the barrier

leads to convergence to an optimal solution.

To be more precise, let us define the general constrained minimization

problem as follows:

min f(x)

s.t. gi(x) Ž: 0. i G {1. 2. m}

where x E E', and f and gi are continuously differentiable. We make the standard

assumptions of the existence of x° such that 9i(x°) > 0, i C {1, 2 ... , m} and the

existence of local minima. The unconstrained subproblem is defined in terms of

the logarithmic barrier function P(x,p) for a fixed y > 0:

M

min 4(x,jz) =- f(x) - p E ln(gi(x))
i=1

s.t. g9(x) > 0, i E {1, 2, ... , ml.

The logarithm of the constraint functions forces the value of i( • ,pu) to become very

large when approaching the boundary of the feasible region, so minimization of

,i-,t) will move away from the boundary (hence the term "barrier function").

The scalar pi is known as the barrier parameter, and its magnitude determines the
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strength of this barrier. However, for any p > 0. no matter how small. 4( • ,p) will

approach + cs near the boundary of the feasible region. In practice the strict

feasibility constraints are essentially ignored when minimizing 4I(. Pi). since the

function's structure itself enforces feasibility. The sequence of unconstrained

minimization subproblen-s arises from minimizing 'D(. -. pk) for a strictly

monotonic?,y decreasing positive sequence {,k}. It is shown in Fiacco and

McCormick (Theorem 8) that the solutions to these subproblems will converge to a

local minimizer of the constrained problem. Now suppose f(x) and - gi(x), i G {1,

2 ... , m} are convex, making the problem convex. Then local minimizers are

global minimizers, and the subproblem solutions converge to a global minimizer.

The following simple example shows how such convergence occurs for a convex

problem in E2 . Consider the example problem from McCormick(1983):

rain x1I + x.

s.t. -xj+x 2 >0.

For u > 0 and arbitrary, the logarithmic barrier function for this problem is

F (x,p) = x1 + x2 - p[In( - x2 + x9 )]

and its gradient and Hessian are

V •(D x ,,H) = ++ _ x8
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respectively. On the interior of the feasible region, the Hessian is the sum of

positive multiples of two rank one matrices. Each rank one matrix is the product

of a column vector with its transpose. Therefore. the Hessian is positive semi-

definite, and since the two vectors are linearly independent, the Hessian is in fact

positive definite. So V'I(x,/2) = 0 within the interior of the feasible region is a

sufficient condition for a strict unconstrained minimizer of P( -,/). Let x(JI) denote

such a minimizer. This condition implies

For instance, if 0 = 1, then x(p 0 ) = [- 4ý, . Solving a sequence of these

subproblems for {11k},o, we obtain the "central trajectory", and taking the limit as

{Ik}I0 yields x* = 1, !ý, the global minimizer to the original constrained

problem.

Of course, most problems do not allow an analytical solution for the location of

the central trajectory. The solution of the unconstrained minimization sub-

problem thus becomes a significant part of the logarithmic barrier function SUMT.
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Much research has gone into unconstrained minimization in general. resulting in

various candidate algorithms for minimizing ýP( ,p) for a given P. Steepest

descent, conjugate gradient, quasi-Newton. and Newton's method are some of

possible techniques. Each has advantages and disadvantages, and a detailed

presentation of each is found in McCormick(1983). However, Newton's method has

become the method of choice for the unconstrained sub-problem, both in the

developmental days of SUMT and more recently as the speed of convergence and

computational requirements of interior point algorithms have come under renewed

study. The important role of Newton's method in underpinning the interior point

algorithms studied in this paper calls for a brief discussion of the application of

Newton's method in unconstrained minimization. This is not a rigorous

mathematical development such as is found in McCormick(1983), but rather the

basic ideas needed within the context of this paper.

The initial intent of Newton's method was to solve a system of n equations in

n variables. The Newton search direction in this case resulted from inverting the

Jacobian matrix of the system of equations and multiplying it by the negative of

the system of equations. An example of this is found in Chapter III. equations

(3.4) and (3.5). In the context of unconstrained minimization, the gradient and

Hessian of the function to be minimized replace the system of equations and

Jacobian., respectively. Thus, Newton's method is used to find a point where the

gradient of a function is zero, a condition known as stationaritv ,ionaritv is a

necessary condition for a local minimizer. If the function is .ri ,:,vex as in

the previous example, this becomes a sufficient condition for ,, aNlimizer.

We strengthen the continuity assumption to require f and - gi, i E {1, 2. ... ,m} to
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be convex and twice continuously differentiable, and further require V 2•(• ,i) to be

positive definite on the interior of the feasible region (which implies strict

convexity). From an arbitrary strictly feasible point xk, Newton's method

generates the next point in the search for stationarity as follows:

xk + I= xk _ (2DxL)-IV,~k,)

where A is a positive step size scalar. For the "pure" Newton's method, A is equal

to unity; otherwise, the value of A is determined by a line search along the Newton

direction -(Vk-D(xkP)- IVD(xk,,) using L( ,,p) as a merit function. An

important way of motivating Newton's method may be seen by replacing ,P( -.,y)

with a quadratic function with a positive definite Hessian. By letting A = 1,

Newton's method finds the global unconstrained minimizer in one step. Thus,

when the behavior of a function between the current point in the search and the

unconstrained minimizer is close to that of the quadratic approximation of the

function formed at the current point, the pure Newton's method will perform very

well. Indeed, as the sequence of points generated by successive pure Newton moves

nears the minimizer, the quadratic approximation becomes better and better.

Because of this phenomena, Newton's method with a step size of unity is said to

have an asymptotic quadratic rate of convergence near the minimizer, that is, the

distance from the current point to the minimizer is bounded by a constant times

the square of the distance from the previous point to the minimizer. Another form

of asymptotic quadratic convergence for Newtons method involves the magnitude

of the Newton step. This property, which plays a key role in a number of

complexity results for interior point methods, states that near the minimizer the
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magnitude of the current Newton step is bounded by a constant times the square of

the magnitude of the previous Newton step. However, a step size of unity may not

always be possible--such a step length at times may lead to a point which violates

one or more constraints and is thus not allowable.

Before moving beyond Newton's method, a few words are required about the

linesearch along the Newton direction when A = 1 is not used. Bisection or golden

section search techniques are among those used. It is important to note that the

strict convexity of 4( -,,y) on the interior of the feasible region and its behavior

near the boundary applies as well to b( ,-u) evaluated along the Newton direction.

so a strict global minimizer with respect to the Newton direction exists. It will be

seen later that for theoretical complexity results the type of linesearch is

unimportant as long as the computational requirements for the linesearch are of the

same order of magnitude as the computational requirements for generating the

Newton direction.

11.1.2 Computational Complexity

The computational complexity of an algorithm is simply the theoretical worst

case bound on the number of arithmetic computations required to solve a given

type of problem. Such a bound is stated as a function of certain measures of

problem size. Three such measures are prevalent. One is the number of bits of

data required to store the problem in a computer, and is denoted as L for length.

The following method for computing L for the linear programming problem {min

cTx I Ax > b, x > 0} is found in Bazaara. Jarvis, and Sherali(1990). We define
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log( - ) as the logarithm to the base 2.

L = [1 + log(n) + log(m) + ([1 + log(1 + lcjj)]

+ [ Z[1 + log(1 + Iaiji)] + E[1 + log(1 + Ibil)I1

Another measure of problem size is the dimension in Euclidian space, denoted n;

and the third is m, the number of constraints. We now present the standard

definition of the function O( - ) used to express computational complexity, using

notation from Papadimitriou and Steiglitz(1982). Let f(n) and h(n) denote

functions from the positive integers to the positive real numbers. Then

f(n) = O(h(n)) €€ 3 constant k > 0 such that for large enough n,

f(n) < kh(n).

If f(n) = O(h(n)), we say "f(n) is of order h(n)". One illustrative example of the

nature of 0(. ) is that for any constant c, cf(n) = O(f(n)). An expression of

computational complexity will be of the form

N = O(h(n))

where N is the total number of computations, or perhaps iterations. h is some

function from the positive integers to the positive reals, and n is a positive integer

or a vector of positive integers which measures the problem size. For a given

algorithm, knowledge of such a function h(•) is key in understanding and
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evaluating the complexity of the algorithm, because h(•) provides a bound on the

growth rate of the computational requirements as the size of the problem increases.

As an illustration, we discuss the computational complexity of the simplex

method for linear programming through a well-known example first shown in Klee

and Minty(1972) and found in both Bazaara, Jarvis and Sherali(1990) and

Papadimitriou and Steiglitz(1982). The gist of the example is that by slightly

perturbing the m constraints defining a m-dimensional unit hypercube and

minimizing - xm over that perturbed hypercube, the simplex method can be made

to visit each vertex of the hypercube. That means the simplex method would

require 2" iterations to solve this admittedly worst-case problem, and the

computational complexity of the simplex method is O( 2 m). Thus, increasing the

dimension of the problem by one doubles the computational effort. This is an

example of exponential complexity, from the exponential function Kr, K > 1, and

indicates that the computation effort is multiplied by some number greater than

one when a measure of problem size is increased by a constant, usually unity. The

implication of exponential complexity is that as problem size becomes large,

computational requirements grow so fast as to outstrip the capabilities of even the

fastest computers. It is important to state clearly, however, that exponential

complexity does not mean an algorithm is not operationally effective. The simplex

method is a good example, for it has and continues to solve all manner of real

world linear programming problems quickly and efficiently. The exponential

complexity does indicate that there are some problems which may take a

prohibitively long time to solve by the simplex method, thus prodding researchers

to find another linear programming algorithm without this drawback. A more
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preferable computational complexity would be expressed by a polynomial function

of problem size, for instance O(LrmSnt) where r, s, and t are known constants.

Under this type of complexity, the increase by a one of a measure of problem size

results in the addition of computational work of lesser order (since, for example,

O((n + 1 )t) = O(nt).) Thus, polynomial complexity avoids the "exponential blow

up" caused by multiplying the amount of work by some K > 1. The remainder of

this chapter will explore recent advances in polynomial algorithms for linear

programming and other classes of constrained optimization problems.

11.2 Related Research

Recent years have seen a plethora of polynomial algorithms for various classes

of constrained optimization problems. This section will present an overview of

several, representing some different approaches to solving the constrained

optimization problem. Algorithms for linear programming are the most

predominant, for at least two reasons. First, there exists the very successful and

renowned simplex method, albeit with exponential complexity, so the research goal

of doing "better than simplex" is tantalizing. Secondly, the linear affine

constraints allow the employment of linear algebraic techniques (such as

projections into the nullspace defining the feasible region) not suitable for more

general nonlinear constraints. This attribute applies to quadratic programming as

well, which, though not as ubiquitous as linear programming, is also heavily

represented in the literature.
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These algorithmic overviews are intended to provide the reader a context in

which to view the complexity results presented later in this dissertation, so only a

concise description of the algorithm's distinguishing characteristics is warranted.

Please see the cited references for complete derivations. When an algorithm serves

as an underpinning for this dissertation's results, a rigorous development of that

algorithm is included at the point which it is used.

The first polynomial algorithms for constrained optimization were developed

for linear programming. The first, in Khachian(1979) and the second in

Karmarkar(1984) are both covered in Bazaara. Jarvis, and Sherali(1990), from

which this discussion is drawn. Khachian's algorithm iteratively generates a series

of shrinking ellipsoids, each of which contains the set of points solving the linear

programming problem defined as minimize {cTx I Ax > b, x > 0}. Khachian

showed that the algorithm will terminate with a solution after a number of

iterations bounded by a polynomial of problem size, and if that bound is exceeded

no solution exists. The computational complexity bound of Khachian's algorithm

is O[(n + m) 6L], where the matrix A is m x n and L is specified measure of the

input length of the problem. Unfortunately, the actual computational performance

of Khachian's algorithm is close to its upper bound, while the simplex method

generally achieves a complexity bound of O(m 3n) in practice. Thus, Khachian's

method failed in application when compared to the existing simplex method.

However, the importance of Khachian's work should not be underestimated. Like

the running of the first four minute mile or the breaking of the sound barrier, it

showed that a feat of previously unknown feasibility could be done. This resulted

in a resurgence of effort, and ultimately the "barrier" of polynomiality was broken
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regularly.

While Khachian broke the barrier of polynomiality, Karmarkar introduced the

first polynomial linear programming algorithm which also competed favorably in

practice with the simplex method. Karmarkar's algorithm addresses a particular

form of linear programming problem: minimize {cTx I Ax = 0, e Tx = 1, X > 0}

where A is m x n, A is of rank m, n > 2, data are integer, e is the vector of ones,

and two fairly restrictive assumptions hold. The first assumption is that an initial

point x0 = (1/n, 1/n, ... , 1/n) is feasible and the second is that the optimal

objective function value is zero. (There are transformations and additional

variables which allow standard linear programming problems to conform to these

requirements.) At the heart of Karmarkar's algorithm is the following projective

transformation, shown here at the start of the (k + 1)th iteration with a feasible

xk > 0:

Yi- - - i { 1, 2, .n}

The algorithm takes a step in this transformed space to minimize the (transformed)

objective function over the intersection of the simplex constraint eTy = 1 and a ball

centered at y0 = (1/n, 1/n, ... , 1/n) with a radius strictly less than 1/ýn(n - 1), the

distance from y0 to a facet of the simplex constraint. This minimization is easily

accomplished by projecting the negative gradient of the transformed objective

function onto the null space of the transformed feasible region and moving along it

to the boundary of the constraining ball. This is the new feasible point, ready for
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the next iteration. After O(nL) iterations and computational effort of O(n 3 "5 L) the

algorithm achieves an interior point solution x such that cTx < 2 - L, at which

point another polynomial algorithm may be used to find the optimal vertex. (Such

an algorithm will be described later in this section.) This bound competes

favorably with the O(m 3n) practical bound of the simplex method. Of particulax

interest to logarithmic barrier function research is the potential function used by

Karmarkar to show quantifiable progress at each iteration toward optimality. That

function,

nln(cx) - Y ln(xj),
j= 1

is a type of logarithmic barrier function for linear programming, and is also a

component of the method of analytic centers for linear programming. This aspect

of Karmarkar's algorithm spawned renewed interest in interior point methods that

ultimately lead to the complexity results upon which this research is based.

Recent analysis by Powell(1991) of Karmarkar's algorithm with the potential

function shown above has established that the exponent of n in the iteration bound

can be no less than one. This is shown by constructing a worst-case linear program

in E3 with n inequality constraints, which transforms to n + 3 variables for the

equality constrained problem. Kaxmarkar's algorithm is shown to terminate in

n/20 - 1 iterations for n > 120 and a multiple of 20.

A well-known property of linear programming is that if a linear program has a

solution, it has a vertex (or corner-point) solution. When applying any interior
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point method to linear programming, it is desirable to find an optimal vertex from

the nearby interior point at which the algorithm terminated. The termination

criterion is that the resulting interior point R satisfies cTi -_ z* < 2 L, z* being the

optimal value, and is motivated by the fact that for any non-optimal vertex x,

c x z- z* (0 , 2 - Since polynomiality is the stated goal of the algorithms

covered, the algorithm for finding a vertex solution should also be polynomial so as

not to negate the importance of that property for the linear programming

algorithm. Such an algorithm is found in Bazaara, Jarvis, and Sherali(1990) and is

called a purification algorithm. It is based on concepts first set forth in Charnes

and Kortanek(1965). Gonzaga(1992) also discusses the basic idea of a purification

algorithm: "... each iteration of a purification algorithm reduces one variable to

zero along a descent direction for cost, doing pivoting like the simplex method. No

more than n iterations are needed, with O(n 2 ) computations per iteration

(Gonzaga, 1992)." Gonzaga's explanation is based on an equality-constrained

linear program in E', and it is clear that the overall complexity of this technique is

of 0(n 3 ). In practice, getting to within 2 - L of the optimal value may be very

time-consuming and therefore expensive. A practical approach, without such a

stringent accuracy requirement but with no explicit consideration of polynomiality,

is found in Mehrotra(1990).

Another established linear programming interior point algorithm is known as

affine scaling. Gonzaga(1992) introduces affine scaling as a type of scaled-steepest

descent algorithm. The nomenclature comes from the scaling of the problem at

each iteration--the scaled space is achieved by dividing xi by the current point xk,

i E {1, 2, ..., n}. This maps the current point xk to a vector of ones. The scaled
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objective function negative gradient, projected onto the nullspace of the scaled

constraint matrix, is the descent direction. A variety of step length procedures

have been employed along the affine scaling search direction. A very simple

procedure uses a constant step length of one. Another moves a fixed percentage,

say 95 percent, of the distance to the nearest axis to maintain strict interiority.

Because of the scaling of the feasible region, affine scaling produces an ellipsoidal

confidence region in the original space, as opposed to the spherical confidence

region for Cauchy's steepest descent algorithm. This allows better progress toward

optimality by avoiding the "zig-zag" prevalent in unscaled steepest descent. See

Gonzaga(1992) for a more thorough coverage.

Affine scaling for linear programming also exists in a primal-dual form. An

example of this is found in Huang and Kortanek(1991). In this form. the search

direction derives from a potential function which incorporates the primal variables

(x) and the dual slacks (s). The potential function is

O(x,s) = p ln(xTs) - E In(xisi)
i=1

where p = n + ý-f. The authors construct primal and dual search directions which

reduce the potential function subject to primal and dual feasibility and an

ellipsoidal constraint on the scaled magnitude of the search directions. The

resulting algorithm simultaneously takes steps in primal and dual space at each

iteration to solve a linear program with computational complexity of O(Vn-- L).

The algorithms discussed so far have been for linear programming. The

20



algorithm presented in this paper is for a more general class of problem with

concave quadratic constraints and a convex quadratic objective function.

Polynomial algorithms for solving problems more general than linear programming

problems exist and are well documented, so the remainder of this chapter will

present several such examples. Of course, each will apply to the more restrictive

linear program as well.

A number of algorithms for solving both quadratic programs and quadratically

constrained convex programs employ the method of analytic centers. General

theory concerning analytic centers was developed in Huard(1967). and an example

of this solution technique applied to quadratic programming is found in Mehrotra

and Sun(1990). Given a general constrained optimization problem in E',

min f(x)

s.t. x E RI _= {gi(x) _> 0, i = 1, 2, ... , mI,

for some z C E1 let the region R, = {x E E' I f(x) _< z, x E R} be bounded with a

non-empty interior. The analytic center of R, is the point in Rz which solves

max (z - f(x))rH gi(x).
i=1

for some positive integer r. An equivalent formulation was developed in Fiacco and

McCormick(1968, 1990) and is related to the logarithmic barrier function:

min - rln(z - f(x)) - m ln(gi(x)).
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Mehrotra and Sun(1990) let r = in. a common practice. With this definition in

mind, their method of analytic centers is straightforward. Let f(x) be quadratic

and convex, and let each gi(x) be linear affine. We are given z0 such that R a is

bounded with a non-empty interior, and x0 a close approximation to the analytic

center of R The (k + 1)¢h iteration begins with zk and xk such that xk a close

approximation to the analytic center of R . The algorithm decrements zk to zk + 1

and finds xk + 1, a close approximation to the analytic center of Rk ± 1" The key

behind the algorithm of Mehrotra and Sun is that by decrementing z k a small
amount, the algorithm requires only one partial Newton step (a step size less than

one) to arrive at an approximate analytic center of RZk + I* The resulting

computational complexity (including the Hessian inversion for the Newton step) is

O (n3 i-4 L).

Another algorithm using analytic centers has a direct bearing on the algorithm

developed later in this paper. Jarre(1991) presents a method of analytic centers to

solve a convex program with quadratic constraints and a quadratic objective

function. precisely the same problem solved by this dissertation's primal-dual

algorithm. The iteration bound is O(m-I jln(e)j) for a tolerance c, also the same as

will be shown for our primal-dual algorithm. The interpretation of e is that the

algorithm terminates with an interior point x such that the difference between the

objective function evaluated at x and at the true constrained minimizer is at most

E. This is known as an &-optimal solution. Although Jarre(1991) uses a different

formulation for the definition of the analytic center than does Mehrotra and

Sun(1990), the concept is the same. Given a small decrement of zk, the analysis
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shows that a single Newton step will arrive at a new approximate analytic center.

Jarre also briefly discusses the problem of finding the initial values of z0 and x0.

and shows that by adding an artificial variable and constraint the same polynomial

method of analytic centers can be used to find z0 and x0. See Chapter VIII for an

explanation and adaptation of this technique for meeting the initial condition

requirements of our primal-dual algorithm.

The emergence of the user-defined parameter e warrants some discussion.

Because it is user-defined. c is not related to problem size. A polynomial

complexity bound containing e, such as that of Jarre(1991) or that of our primal-

dual algorithm. may thus seem less satisfying than those for linear programming

which contain only problem size information, namely n, m, and L. The

iequirement for e is a result of the more general quadratic objective function and

constraints. Assume a solution exists. With a nonlinear convex quadratic

objective function, an extreme point solution is not guaranteed; and even with a

linear objective function, thought an extreme point solution must exist. it will not

necessarily be at a "vertex". Indeed, the concept of a vertex may riot apply in the

presence of nonlinear quadratic constraints. For example, the concave quadratic

constraint g(x) = 1 - x 2 - y2 > 0 in E2 generates a feasible region consisting of the

boundary and interior of the unit sphere, which is compact but clearly has no

vertices. Thus, there is no way for some measure of problem size to indicate a

stopping point near an optimal vertex as L does for linear programming. Hence,

the use of a tolerance parameter e. One must take care, however, that the manner

in which f appears in the complexity bound does not compromise polynomiality.

As a reader of this dissertation pointed out, had a bound of O(Nj-T 2 I1 ) resulted.
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substitution of 2 - L for c as is (lone for linear programming would result in

exponential complexity even though 2 1 " ' is a user-defined scalar. Tile scale of

the problem also may complicate tile selection of E. For an arbitrary E > 0 and

objective function f(x), suppose we can compute T such that If(xAj •_ T for all

feasible x. Then with the simple transformation f(x) = (E/2M)f(x), minimizing

f (x) over the feasible region results in every feasible x being an e-optimal solution.

0o while the use of the tolerance E is necessary for the result, readers should

recognize that polynomiality based partly on e does differ from polynomiality based

itrictlv n problem size.

The research which provides the underpinnings to this dissertation concerns

thi logarithmic barrier function and SUMT for solving both the convex

(.uadratically constrained problem and the quadratic program. Significant research

ii. the recent past has proven polynomiality for this solution technique for both of

thes'ý problem classes. Two papers in particular are crucial to our results--they are

menti-med briefly here. and covered in detail later in subsequent chapters as they

apply. den Hertog, Roos., and Terlaky(1990) showed that the classic logarithmic

barrier method solvc-- the quadratically constrained problem to within a tolerance

of f in O(,i-T I/n(c)j) iterations. The convergence and complexit- analysis of den

Hertog, Roos, and Terlaky provides the basis for the initial complexity result for

our primal-dual algorithn. and is presented in detail in Chapter IV.

Anstreicher(1990) aTrplied the logarithmic barrier method to the quadratic

program. The convcrgence and complexity analysis differs substantially from den

Hertog, Roos, and Ter.aky(1990). and establishes an iteration bound of O('rWfi L).

Furthermore, Anstreic ier shows that with the correct initialization and selection of

24



parameters, the classic logarithmic barrier SUMT as implemented by Fiacco and

McCormick in the 1960s has polynomial complexity of O(1-rn L ln(L)) for quadratic

programming. Anstreicher's results are presented in Chapter VII, where they

establish that the primal-dual algorithm developed in this dissertation has an O(-,'-

L) iteratioir bound when applied to a linear programming problem. (This

particular bound does not extend to quadratic programming.)

This cLpter would be incomplete without citing two recent and extensive

s ey papers on interior point methods. The first, Gonzaga(1992), has already

been cited with respect to an affine scaling linear programming algorithm. It

contains a weal'h of information on primal, dual, and primal-dual interior point

method., for linear programming. The second is Wright(1992), which is an

excellent primer on the basic theory underlying interior point methods for linear

and nonlinear programming, with special emphasis on the logarithmic barrier

function. Wright includes a polynomial complexity proof for a linear programing

barrier function method that is somewhat similar to Anstreicher's, as well as a

survey of primal and primal-dual methods and linear algebraic issues for interior

point methods.

Fi -adiy, in almost any reference concerning barrier functions in mathematical

programming, including those above, one will find citations for Fiacco and

McCormick(1968, 1990). Their classic text on nonlinear programming, first

published in 1968 and now reissued, remains a fundamental source for

understanding this field of research. Their efforts at the time were directed toward

nonlinear programming and did not involve computational complexity, but did lay
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the groundwork for much of what has followed in linear and nonlinear

programming. The startling and satisfying discovery by Anstreicher of the

polynomiality of their original 1960s-vintage SUMT for quadratic programming

indicates the enduring value of their research.
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CHAPTER III: THE PRIMAL-DUAL ALGORITHM

11I.1 Problem Definition

XWe define a convex problem P:

min bTx

s.t. gi(x) > 0, i E I {12,2 ,m}

x E En

where b is a vector in En and each gi(x) is a concave quadratic function for i E I.

Let R =_ {x E En I gi(x) Ž_ U, i E I} and R* - {x E En I gi(x) > 0, i E I}. Let us

assume R is bounded and R* is non-empty; and let us define the following

logarithmic barrier function on R*, for u E E1 and strictly positive:

-=E ln(gi(x)).i=1

The gradient and Hessian of this function are as follows:
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V~( -b in Vq,(x)It, gi(x)

• =-1 gi( )2 gi(x)

Note that 4(x,,u) is convex in R* for fixed p > 0 and thus has a positive semi-

definite Hessian. This structure allows for the following lemmas:

Lemma III1.: For an arbitrary z E E' and nonzero, and x E R*.

If R is bounded, then

z rVgi(x)Vgi(x) Tz = 0. i E I (3.1)

and

zTV 2gi(x) z = 0, i I (3.2)

cannot both be true.

Proof: Suppose not. Then (3.1) and (3.2) both hold. Let i E I be arbitrary. That

(3.1) holds implies Vgi(x)Tz = 0. Now let y = x + Az, A E E1 . Using x E R* and

(3.2) leads to

T A2 V
gi(y) = gi(x) + AVgi(x)Tz + - 2-zTV 2 Yi(x)Z = gi(x) > 0.

Since i was arbitrary, this holds for i E I, which implies y E R*. But II y -. + oo as
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A -* + oc, so R"* is unbounded. This contradiction shows the supposition to be false,

proving the lemma. Li

Lemma 111.2: If R is bounded, then V24)(xP) is positive definite in JR*.

Proof: Let z E E' and nonzero be given.

___________ Vgi(x)

= ~(zT'Vgj(x)Vgi(Xfrz) + M (,T - V2gi(x))z)

Since gi(x) > 0, and Vgi(x)Vgi(x) T and (- V2 gi(x)) are positive semi-definite,

i e I, each term in each summation is non-negative. Then by Lemma 111.1, at least

one term must be strictly positive, proving the lemma. n]

The specification of a linear objective function in problem P is not restrictive. Any

constrained optimization problem with a general objective function r(x) to be

minimized can be transformed into a constrained optimization problem with a

linear objective function by defining another variable z, adding the constraint

z - r(x) Ž 0, and minimizing z subject to this and the original constraints. Thus,

given a problem

min f(x)

s.t. gi(x) _ 0, i e I
x E En
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where each gi is a concave quadratic and f is a non-linear convex quadratic

function, one may convert it to the form of problem P by introducing an additional

variable z E E1 and using the transformation above to achieve

PZ: min z

s.t. gi(x) > 0, i E I

z - f(x) > 0

x e En, z e El.

This is an equivalent problem but with a linear objective function and concave

quadratic constraints. Note the implication that a convex quadratic program (QP)

is therefore a special case of P.

This transformation does not compromise the E-optimality criterion mentioned

in section 11.2 and in Jarre(1991), as we now show. Let (x*, z*) solve Pz, and let

(xk, zk) be an E-optimal solution for Pz. By construction, x* solves the original

problem and z* = f(x*). Since (xk, zk) is feasible we have f(xk) _ zk and

f(xk) - zk < 0. Then using the definition of E-optimality,

zk z* _<

zk + f(xk) _ zk _ z* <E

f(xk) _-z* _<

f(xk) - f(x*) < 6
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So xk is an E-optimal solution to the original problem.

Since P is a convex problem, there exist first order sufficiency conditions for a

global minimizer for P. We first define the Lagrangian for P using the notation

u (uI, u29, .., Urn):

L(x,u) =_ bTx- Z uigi(x)i=:1

Henceforth, we will let VL(x~u) denote VxL(xu).

First Order Sufficiency Conditions for P (see McCormick(1983) and Fiacco and

McCormick(1968. 1990))

3R ERu U> 0such that VL(gd) = 0andiT gi(R) = O, iEI

=Y x is a global minimizer for P

We also have the associated Wolfe dual. The assumption that R* is non-empty

satisfies Slater's condition for convex programming, so (Y, Tr) solves the dual

problem D (see Fiacco and McCormick(1968, 1990)):

m
D: max L(x,u) = bTx- • Uigi(x)

i=1

m
s.t. VL(x,u) = b- uiVgi(x) = 0, ui Ž 0, i E I

i=1
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Returning to the logarithmic barrier function as defined for problem P, consider the

problem

min -D(x,p)

S.t. X E*

for an arbitrary y > 0. Let x(p) be the minimizer of D(x,ui) in R*. By defining

Sui(/) -= p/gi(x(tu)) and u(p) = {ul(y), u2(), . . . , um(p/)} we see that (x(,u),

u(p)) is dual feasible. This dual feasibility allows the formulation of a lower bound

on the optimal value of the objective function bT" (see Fiacco and

McCormick(1968, 1990), Theorem 22). This lower bound combined with the upper

bound given by bVx(y) (since x(yi) is feasible) yields

b Tx(JL) _- M Ui(p)gi(x(j)) < bT R < b T x(,,)

i=1

•= bTx(Yu) _- mP < bT <_ bTx(,U).

A more extended development of duality in the minimization of 1(x, IL) is found in

Fiacco and McCormick(1968, 1990), the text upon which much of the preceding

discussion is based. An important lemma relating to these upper and lower bounds

when minimizing ýI(x, q) is contained in den Hertog, Roos, and Terlaky(1990), and

is presented here without proof.

Lemma 111.3: For decreasing values of p > 0, the objective function bTx(it) is

strictly monotonically decreasing and the dual objective function bTx(ii) - mp is
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monotonically increasing.

Proof: Omitted. See den Hertog, Roos and Terlaky(1990), where the authors

prove the result for general smooth convex programs. The first part was first

proved in Fiacco and McCormick(1968, 1990) for the more general convex

programming problem. LI

111.2 The Primal-Dual Algorithm

This research concerns convergence and computational complexity of an

algorithm that, applied to problem P, simultaneously finds the minimizer R- and

the associated vector of dual variables (i.e. KKT multipliers) ii. The following

motivation for the algorithm is from McCormick(1991b).

Primal-Dual Algorithm: Solve the equations

VL(x,u) = 0 (3.4)

uigi(x) = 1Uk, i E 1 (3.5)

with x E R* and ui > 0, i E I, for a positive sequence {ykj} 10. Satisfaction of (3.5)

is known as perturbed complementary slackness. For a given value of yk > 0, let

[x(p k), u(1uk)J denote a point satisfying the above equations with x(pk) E R* and

uJi(k) > 0, i E I. Then [x(lik), u(Atk)] is dual feasible, and
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bTx(V k) > b > bix(I) -- 1 ui(Ik)gi(x(~ik)) = b'x(pk) - mnki=l

The point x(11k) is also a minimizer of ,D(x,,uk); this can be seen by substituting

IJk/gi(x(fLk)) for ui(,1k) in VL(x(jik), u(uk)) = 0, which results in VcIb(x(1,k),yk) =

0. -( inherits the convexity of problem P, so stationarity and feasibility are

sufficient for a global minimizer.

In practice, these equations would not be solved exactly, but approximately. The

basic idea of the algorithm is to use Newton's method to solve (3.4) and (3.5) with

a line search to determine step size and retain feasibility. We assume that at the

start of the kth Newton iteration we have Yk > 0 and (x.,u) such that x E R* and

ui > 0. i eI. Let U =diag(ui), G - diag(gi(x)), and Vg be the n x m matrix

whose ith column is Vgi(x). For simpler notation, let p denote pk. The Jacobian

of (3.4) and (3.5) is

J(x,u) = [V2L(xT -Vg

Using the bordered inverse formula in McCormick(1983), we have

M -U 1 M-1VgG-

J- 1 (xu) = -G-UVgTM- 1  D

where D = G - 1 - G -UVgTM - 1Vg G - 1, and M is defined as follows:

M = V2 L(x,u) + Vg UG-1VgT
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V 2 L(x,u) + T qi(x) Vgi(x)
gi(x)

for x E R* and ui > 0. i E I. Some manipulation reveals

m ,, 7q.(x)vg,(x)T _V
2g2 (x)]1

M = uigigx). g .x) (3.6)

The following lemma results from the structure of M and its similarity to the

Hessian of (D(x,jt).

Lemma III.4: R is bounded 4' M is positive definite in R*. for ui > 0, i E I.

Proof: Let z E E' and nonzero be given.

zTMz zT [ u'g'(x) Vgi(X)Vgi(x)T V2g(x) x)]

Z _ ~uizgi\x)[ gi(x) 2  g.(x Z

= ~(izTV i(x7 ~~) z+ (ujz ( _ V2gj(x))z)

Since ui > 0, gi(x) > 0, and Vgi(x)Vgi(x)T and (- V2gi(x)) are positive semi-

definite, i I, each term in each summation is non-negative. Then by Lemma

III.1, at least one term must be strictly positive, proving the lemma. D

Note that for positive definite M and yu > 0,
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T ,t -i • u.qC] .,;(X)2g(i :gI (3.7)
Sqix)- g1(x) ]

gi(x)2  9i(x)

• r gi(x) T gix)J

V'(xqi) - (x)2 gix)J (3.8)

and is positive definite.

We have shown that for bounded R, M - 1 exists. If x E R* then G- exists. So

given the boundedness of R and interiority of x., J - 1(x,u) exists. Note that the

diagonal nature of G and U implies that the effort in computing J - 1(xu) is of the

same order as in computing M - 1. that is, O(n 3 ).

This explicit expression for the Jacobian inverse allows the formulation of the

Newton step with step size t. Here, e is a vector of ones.

X(t) _ x F M M Vg G [L VL(x,u)t
u(t) G u J - G-UVgTM- D jLUGe -utc
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x M --'[b T V.q,-(X)Igi(x)]
+ t

u M
LTG - lvg"'m - I b"' - it.E vgi(x)lgi(x) + G - ley u

L

Now let p M b"' - U vgi(x)lgi(x)l 0 ) - 1-\7.j)(Xj,).

The ',\ewton step becomes

x(t) 
+ UG - 1V 'r p11(t) u g p + G u

I = 1XI It

We next explore the implications of the Primal-Dual Newton direction in the

primal variables.
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CHAPTER IV: PROPERTIES OF THE PRIMAL-DUAL NEWTON

DIRECTION IN THE PRIMAL VARIABLES

IV.1 Developing a Primal Variable Algorithm

Let H denote V24)(x.JL). We have noted the strong connection between H and M/,i

for fixed IL > 0. namely.

1 M~~ -H- ug(x)") Vg()g(x),T V2gji~x)]
'=1 L i(x) gi(x) ]

Indeed, if 'iigi(x) p- = 0 for all i E I, then M/p = H.

Now let , max 1- ýIj X) Then for any d E E'.

n ?n7q( 7V1 ( V2gi(x)

dH,ý -,X) _________ -ld < djrl,\I dI

= qi(x)2 gix) jjd
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< d T{H + 7n Vgj(X 1g(X)r _ Vlgi(x) d

which implies

(1 - )dTH d < d"\M d < (I+w)dTH d, (4.1)

and if ýu < 1.

41-u;-- 11 d 1, _< /]d / 11 _< • 1 +wI11idI1H (4.2)

where for any positive definite n x n matrix A, 11d 11A =_ (dTA d)11 2 defines the

matrix norm of d with respect to A. We will now adapt the results of den Hertog,

Roos, and Terlaky(1990) to develop a primal variable algorithm using the primal

variable Newton direction p(x,u.jt) - -(M/p) -1 (V(xqi) generated by the Primal-

Dual Algorithm, and w sufficiently small to obtain convergence and polynomial

complexity. We will use p as an abbreviation for p(x,u,,a) when clarity does not

suffer because of it.

A Primal Variable Algorithm: This algorithm loosely follows the SUMT central

path. It gets close to the central path by doing linesearches seeking to reduce

F(xq) along successive Newton directions. When used in this manner in the

course of a line search, D(x,yt) is called a merit function. The Newton direction p is

the one generated in the primal variables by the Primal-Dual Algorithm. We
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assume

w= max 1 uigi(x) <1

iEI I' - 62

at all times. This assumption is not blithely made--it is quite restrictive, and the

reader may reasonably wonder whether it could actually be satisfied without

sacrificing polynomiality. In fact, Chapter VI of this dissertation presents a

method for doing so.

It will be shown that this bound on w keeps M/y sufficiently close to H to

allow proofs of convergence and polynomial complexity. The algorithm proceeds

by doing successive linesearches until 2w41 + I7Pm/ - -- w.a

tolerance. The positive lower bound on this tolerance is quite small because of the

size of u;, so if it is approached during the linesearch the upper bound will be easily

met, and the linesearch may be terminated. (For w _< & the upper bound is

strictly greater than the lower bound.) When this tolerance is obtained, we reduce

it to jT = (1 - 0)I' for some 0 E (0, 1). The algorithm ultimately achieves an f-

optimal solution value for P. A point x is said to be e-optimal if. given the true

constrained minimum z*, bTx - z* _< E.

inmut

Reduction factor 0 E (0, 1)

Tolerance r = 1--Lw. Assume w = max 1- uigi(x) < 1 always.
iEI 6- 2

T is an accuracy parameter.
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xOE CR* is given, as is yo < 1/Y, and u > 0. i EI such that _

begin

x=xO, u = U0 , it= P

while y > 7/2m do

begin outer iteration

while 1IP IM/gl :- T do

begin inner iteration

= arg n A {<(xIu) s.t. (x + p) *

ilp IIV/I •dFg2

x = X+ -2p

end inner iteration

= (1-0)P

end outer iteration

end

IV.2 Convergence and Complexity of the Primal Variable Algorithm

Let qx(x + d, p) - 4(x,1u) + VI)(xp)Td + 1 dTH d, the quadratic approximation of

¶1(x + d, u) at x.

Let q,(x + d, y) = @(x,1u) + VD(x,pu)Td + ½ d"WM d2 17
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= P(x,u) + V•T(x,,u)rd + dT(H - E) d

=q(x + d.M) -)1 dTE d

m i' FVnj(x)Vgj(x)W Vg(x).l
where E Eiix ZgX)gk1) - Id('vhreE-z'14= g•}[ fl(x)2 gi(x)J

From the relationship between H and 1 M and the definition of w we have
11

q(x+ d.p)-½Ld"Hd < qx(x+d. p) < qx(x+d,j)+3)wdTHd

The proof of convergence and polynomial complexity for the primal variable

algorithm is developed through a series of five lemmas. The synopsis below is

based on one in den Hertog, Roos, and Terlaky(1990), and may aid the reader in

following the development of the convergence and complexity proof:

(1) Lemma IV.1 gives an upper bound on the absolute difference between

1(x + d,yt) and q,,(x + d,p).

(2) Lemma IV.2 shows that if a proximity criterion based on the Primal-Dual

Newton step in the primal variables is met at a point x, then x lies close to the

minimizer of 1( •,/). "Closeness" is measured using the norm with respect to the

Hessian of ,I(x,p).

(3) Lemma IV.3 establishes that when the proximity criterion from Lemma
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IV.2 is not met. one obtains a guaranteed reduction in ýP( •,,u) when doing a line

search along the Primal-Dual Newton step in the primal variables.

(4) Lemma IV.4 gives an upper bound on the difference between f4(xq) and

I(x(i),IL), where x(p/) is the minimizer of -b(. ,,), when the proximity criterion

from Lemma IV.2 is met.

(5) Lemma IV.5 gives a bound on the absolute difference between the values

obtained by evaluating the objective function of P at x and x(ju), when the

proximity criterion from Lemma IV.2 is met.

With our previous assumption of w < -L throughout all iterations, we can

prove these lemmas analogous to those in den Hertog, Roos, and Terlaky(1990).

The proofs are similar to those in the referenced work, adapted to deal with the use

of M/ji instead of H in the quadratic approximation of 4(x + d, y).

Lemma IV.1: Let w < -L , ldIIM/M < 1 -- w for an arbitrary d E E', and let

x E R*, p > 0 be given.

Then x + d E R* and

Idl .-ý(x + d.)-q~x+d )I < ½ A IdFH + 1 P
2 ~3(1 - lid IIH)

Proof: 1ld1 M/A < li -w l 1 IdI/< 1. Using the Taylor expansion of b(x.p), we

have
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-1(x + d, p) =qx(x + d, it) + tii=3

where ti is the ith term of the Taylor expansion. In den Hertog, Roos. and

Terlaky(1990) it is proved that for lid l1H < 1. x + d E R* and E ti converges such
i=3

that

ti <d
iE -< 3(1 - ldl)

Thus, ,,(x + d. #') = (x+d, pt)+IdTE d+ 00

i=3

((x 4-d, P,)-ijK(x+d. p) d T,.,IT d ++ ti
i=3

-11(x + d, p) - qx(x + d, .u)[< 1 ý d H-+ 3(11-ddiiH)' proving the

lemma. []

Lemma IV.2: If w < 62 w41 ±w< IIPlIM/p ,then - 5

II P IIH

Proof: 11iP I'M/p < - w , IIP wIH <p Let h be arbitrary such that 11 h 1H -

pI + 1P11i 1h 1 43211PPH -:'"

IIP ±hiiH -• lPIIg+IlhIu = 5IpI4H < 4(4.3)
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Consider values of (D evaluated on the ellipsoid {x + p + h I IlhllH = ~IPIjH}. From

Lemma IV.1,

2 p + h lpff
'ID(x + p +h, p) >! ý1-(x + p + h.y) 2 -j p •+ h 11H -3( ,ph }44)

Since x + p minimizes q4, V q(x + p, p) = 0

Ax(x + p + h, p) = j•j(x + p. y) + V~x(x + p. p)Th + ihTV2qx(x + p, y)h

= ff(x + p, U) +-½ hW(1M) h (4.5)

Substituting (4.5) and (4.3) into (4.4) yields

- 25 2 125 3
(x + p + h, y) >_ x(x +p, y) + lhW(LM) h - 611 p 11 ff P11

S4x(x + p, p)+ 1 (1- w)llhp$ - W-IP p i fl/- a1

_> qx(x +- p, 1) -l(2. - a)9 lpjý/ - 25• plý2 -"-6[,•lt

S< 9 9- 34w > 0, which with liP 11H • implies628

<ID(x+p+h, p) Ž •(x+p,p )+ (9 -34w)11pl - 125P
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I + Ipd-, + ' 9 34w)I I11 11

From Lemma IV.1 we also have

+(x + p), ) < (x + p, P) + 2 +p IIII•+
9"ý"PH3(1 -11P IH)

Since 2wJ1 +o • 1pnII/ -:!=> w <- 1 •IPHIII we have

,D(x+ I). 1) < 4,(x+ P. P1) + 1 3 PI

< q4(x + P. I) + -4 h1P II

andsoLu<-2 4 L < L9- 34w =* ,D(x + p, y) < D(x + p + h, y).

Thus the center of the ellipsuid has a value of t less than any point on the

boundary. By applying the strict convexity of 4b we see that the minimizer x(ys)

must lie in the interior of the ellipsoid, proving the lemma. []

The requirement that 2w41 + w _ IIP hIM/l does not significantly complicate the

algorithm since w is fairly small. The continuity of the gradient and Hessian imply

that if in the course of the line search this condition fails (1iP hIM/. is too small), one

can "back out" along the Newton direction to find a point that does satisfy the

conditions of the lemma.
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Lemma IV.3: If w < 62 and I1pIIM/, >l41 -"',the decrease A in 4) after a

linesearch along p using 4) as a merit function is

A> 1-148 '

Proof: Let A be a step length such that 11Ap 11H < 1 and 0 < A < 1. From Lemma

IV.1 and the definition of q,(x + Ap, u),

b(x+Ap, p) •_ q,(x+Ap, y) + 12 ApI A3 p4+

+ + 3(1 - All p IIH)

2at TIN A3
- 4(x, p) +,AV4D(x)rp + 1 A2p I p + Wwjj 1A2 aIp• +

2 p 3(1 - All p 1IH)

4)(x, y) - 4(x + Ap., u) > - AVD(x)Tp - T I2p' M p

A ½U'IlFH - 3(1 - Ail p lffH

Now

- V(X)'rp = VD(x)T(1M) - IVD(x)

= V.I(X)T(1IM) )-- 1 V-(x) = 2lp,12/Al
M/

so
(D(x, it) - , D(x + Ap, y) > All p 112 / t - A21pl /t

'311P 11.H • (4.6)4 7H - 3(1 -- AlP 11)
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>(A -!A' (1pH I 3(1 P OH (from (4.2)) (4.7)(A 3(1 - All p - IH)

> (A 2 )11 ' 11 A 'A A 11 P Ip//

- !- A ') / l - A - 1 p 112 + I 2 L, ',,P // / 1 2 cq P ] / 3 1 - A [ I H

"9 "1PI ( -A3!i PI•- (4.8)>_ (A - ½,\2)I1 p 112t - Ac-1 p 112 - A3( 11 -- • P (4.8)

Now let A 1 Then with some manipulation (4.8) becomes

D(x,i) -b(x + Ap, /i) TO 1 -iIp[H -16 1944

We also have w a which together imply-62 nd9I 1  > 81+-w

ýD(x, p) - D(x + A•p, u) > _1148"

Thus the lemma is proved. El

Corollary IV.3: If w < - and 1pIIlIM/, •-1-- w, then 4)(x, p) - 4)(x + p, p) >0

Proof: From (4.8) and A = 1 we have
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2 H 11 3(1 - 11pIIH)

i 2

3(-L)

8i

The next lemma may be of general interest, since it allows one to bound the

difference between the current value of ((x,pt) and the minimum value 4'(x(ji), /1).

Lemma IV.4: If ,' < -L and21 + '_<!Pi < 141 - then
__ __ __- 62 M 8-

D(x, p) - 1D(x(p), p) <__ 4 1IP 112

Proof: Let d = x(p) - x. From Lemma IV.1 and the definition of 4q,

D(x([), p) > qx(x+d, 1) - ½ Ll d 3N 1lidll )

-= '(x, P) + V(I(x, uI)Td + IdTIM d - ½LAd 3(1-1d IH)

-I,(x, P) prIM d + 1 r' - iLdi H2 A 2 d dl3l 3(1-l-d1H)

From the Cauchy-Schwartz inequality we obtain pT 'M d < 11 p I1M/p li d Thus

.(D (X (Y), U) > I(x, P) -11P 11M /j.11d 11M/ +½111dl /, 11 1w I (1-1ldUIH )

,(x, t)-,,(x(•I), /1) < IIPlIM/pldllM/p - lIldll!,i/ + ½!ddl• +
493(1 - d
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< ( +"; 1 P IH11d H- ( 1- ~ld 1 + kul d 112+ 1± id IP(49( 11 2 H 3(l -1 dI (4.9)

where (4.9) follows from (4.2). From the definition of d and Lemma IV.2 we

obtain

5 (1 + l)dp 1211
,(X, it) - ý(X (it), /1) 7< d2( +$o[P[f ld + J ldl + 31 -- n(4.10)

9(+U)IpIJ 3( 4IdI1 2 IdIIH

Again applying Lemma IV.2. the fact that - 1 + w < 0, and 11 P IIH 5 4, we have

(4.11): (4.12) results from 1 + L, <.

:5 ý(1 +co )l/2H + )) p62 (4.11)

<_ 4 11p -H (4.12)

This proves the lemma. [I

Corollary IV.3 furthei shows

• (x + p,I - 4,(x(ji), p) _< 4(x, p)- -(x(ii), p) _ 4 11p&llH- (4.13)
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Lemmina IV.5: If < - and 2,,J 1 +ý p 1< ~ thcn

1)'x -b`x (y) < ¼ nYiT

Proof: (See den Hertog, Roos. and Terlakv(1990).) At x(p,u) \V-(x(P), it) 0.

Taking the inner prodluct Of Vý`(X([L). IL) with (x - x(ju)) we have

b'rx - b'"x(j) n' V, .j(X([L))T(x - x~l)) 0.

Now g~ is concave =: qi(x) - gjý x(pi)) < Vgi(X(pi))T (X _-(,)

b~~~ 'x-bx ' H ~x-~xI) 0 (4.14)

We apply Lemma IVA. to obtain

b~~~~xbT _) - (~ i,/) b bTX (,U) mn

-Nx, P)_____ - ZN(V,0= pln(gi(x)) - ln(g2 (x(pi))

161

bxb T(XI _ XmP

Define vi gi~x)/g1 (x(ii)) and w Ebx().Then from (4.14) and (4.15)

w- _
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1 fl

I< - I V , (4.16)
i=!

?v < + ln(v)• (4.17)

and combining (4.16) and (4.17) we obtain

rn I in
11- i < 1' < L + I in(v)" (4.18)

- 16

The geolnetric-arithinetic mean inequality implies

in ) I/in I i

i~in

Let F~ ?7-~ We can then obt,-in

- - i=1 1 "\± ,= /mi <- ± mln(r
1n -1 z 1 6 llv 16-rni _ 16

-= -1 <_ _< 1 + i11M (4.19)
- m - 16m -- n~

71 0 <0 forn > 1, nd -w--1 >0 for 0 < T .1. soIr (-F

is monotonically decreasing for F > I and monotonically increasing for 0 < T <_ 1.

Suppose T > 1 + 1

1n+±nU-)-T 1 T < - +In 1+ +_ +• 16m 16m 2ý-r
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The third order Taylor expansion of In(I + from 1 is

In 1 + 1 4rn 4-i for someaE 1 1+In ý- 1 3 -r4- 24aam 3/2 "

The last term is maximized by a = 1. so

1 +nTl-T+• 1 + 1 1 _1_

+6-- +In(7)T-• + 1 <1 ++
16m- 16m 2Y-- Sm 24m3/ 2  2g-F-

1 1
16m 24m 3/2

In >1 1 -±m+In( )-F T + 1 < 0 which contradicts (4.19).
16m

So the supposition is false, and - < 1 + . Now suppose 0 <" < 1 - 1

We have shown that

In(iu ) - T is monotonically increasing in this region. By similarly manipulating the

third order Taylor

expansion of ln(1- 2ý-) we again can show 1m + ln(iT ) -T +1< 0. producing

the same

contradiction. Thus 1 - < - < 1 + 1 which leads to the following:

2,f-m) - -rn w
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< < +ln(V) < +l+n 1+ + - + <16 16- 2-;- 16m 24m3/2 2TW - 2T-

w<1Ji =: wI U,)T1 (bT(x -x(,u))) < FM

Ib(x - x([L))I < 1iifin . which proves the lemma. 0

Convergence and Complexity

Theorem IV.A: The algorithm requires at most K = O(In()) outer iterations to

arrive at a solution within an e of the optimal solution value for P.

Proof: Itk = (1 -O)kPO. From duality, we have bTx(ttk) _-z* < ukm. With

Lemma IV.5, this gives us

bTxk - z* = bxTk _ l)Tx(/k) + bTx(OUk) - z*

<bTxk -_ )TX(/Ik) + bTx(/Ik) - z*

"_< nkq-f + ±,km = ,k(2m + m)

So we need a value of K such that (1 - O)kPo( I-h + m)_< c. Taking logarithms, we

obtain

-ln() + In(qFl- + im)+ In(paO)
K > -n19

--In(1 - )
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We have assumed p0 <_ 1/c. and know 9 < - In(l - 0) for 0 < 9 < 1. This implies

- 21n(E) + ln(21n) - In(f) + nlv + in) + ln(PA)
19 - ln(1 - 9)

Therefore K > 2 - 21n(e) + ln(m) + ln(2)) satisfies this inequality, proving

K c

Theorem IV.2: The total number of inner iterations, say N. during an arbitrary

outer iteration satisfies

N6 < 1+ 1 0Om+ Fr-n) • where 6 = 1-- is from Lemma IV.3.1 -0 148

Proof: Let ji be the value of the parameter for the current iteration. and p the

value for the previous iteration. Recall j! = (1 - 0)p. We denote the sequence of

points generated by line searches during this iteration as x0 , x 1. x-, ... x . X0 is

the value of x at the beginning of this outer iteration. From Lemma IV.3,

. (xN, j2) < °, ) - N6.

A bTx ln(gi(x)) bTX m ln(g(x)) Ob TxAlso, ¶5('x, • (1 - 0)p i=1 i =-1* lngix

N6 < KD(x0, j 41(x', p) Ob-TX
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-< I(x°, it) - (I(.x, y) + O-(bTxO - brxN)

Because x0 is almost centered with respect to p, we have b(xO. p) - 4,(x(p), ji) < 1.

SD(x O .•,) - , "( . 1,) := D(x O . p) - D(x ( A), A,) + •(D( ( j), P) - D(x A, P)

< 1 + 4,(x(IL). 1) - 4)(xN, •)

<1

N6 < I + -- (b-x0 - b'FxN) (4.20)

Since x 0 is nearly centered for p and xN is nearly centered for f, Lemma IV.5

implies

bT(xO - x(/)) _< 1lm-i (4.21)

bT(xN-_x(f))g •- ½• t " (4.22)

From Lemma 111.3, 0 < bTx(P) - bTX(g ) and bTx(P) - mP < bTx(f ) -- mt.

S~0 < bx()-b() t_ (•-7.(.3

Combining (4.21), (4.22), and (4.23, we get
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brxO - bTxN = bTxO - brx(M) + bTx(#) - brx(j ) + bTx(1 ) -- bTxN

<__ + Y pm(i-_T,)+19rn = 4,(l-• + m(1-- (I-- 0)) + 1(1--0)g-)

• /u(,iT+ Om)

Substituting in (4.20) we thus obtain

S <- 1 A4- L(b'rxo - b x-') < 1 + 1 0_--(. + Om). [

Combining Theorems IV.1 and IV.2. the total number of inner iterations is

±1 +I_ 00(I- O0m)) O(l/n(Im!)) -= + _-,Fm- + Om)) O(ln(m)).

Furthermore. the order of 0 has a key role in determining the bound on the number

of iterations.

0 _( = In(,) 1) iterations

0 =0(1) => O(m ln(c)j) iterations
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Since each iteration requires O(n 3 ) computations (the Hessian is inverted), the

computational complexity is:

O(n3,rYI n( 6•) for # o0(

O(n3m Ifn(E) ) for = 0(1).

Consider the special case where all constraints are linear affine. (This implies P is

a linear program.) Then by letting e = 2 - L the purification algorithm for finding

an optimal vertex described in Chapter II and in Gonzaga(1992) may be used.

Since the complexity of the purification algorithm is the same as that of the

Hessian inversion. the overall complexity of the algorithm is not altered.
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CHAPTER V: THE PRIMAL-DUAL NEWTON DIRECTION IN THE DUAL

VARIABLES

V.1 Analysis of the Dual Variable Newton Direction

In the previous chapter we found that when the deviation from perturbed

complementary slackness is kept small, a primal variable algorithm using the

primal portion of the Primal-Dual Newton direction will converge to within an E of

the solution to problem P in polynomial time. It is therefore logical to consider

next the changes in the dual variables induced by a Primal-Dual Newton move.

Indeed, if the dual variables change in a manner which maintains the small

deviation from perturbed complementary slackness, the polynomality of the Primal

Variable Algorithm will also apply to the Primal-Dual Algorithm. In this chapter

we investigate the nature of the dual variable movement and how it affects

perturbed complementary slackness. It will be shown that the dual variable

Newton direction with a standard step size procedure does not guarantee

maintenance of a small deviation from perturbed complementary slackness in all

dual variables. However, further analysis yields a modification to the step size
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which does maintain this small deviation.

Recall the Primal-Dual Newton move:

u(t) x I+ T Vgp + G-c - ut

where p = -\ - 1Lbr -/itEvgi(x)/gi(x)j = - M - VD(x,,).

Let i c I be arbitrary, and ui(t) denote the new value of the associated dual

variable given step size t. Then we have

Ui~) = Ii+ ui gii~x)/* +uPt
ui(t) =ui + 9i(~)Vgi(x)Tp +g(x)

=, ui(t) = ui(1 1gi(x)Vgix)Ttp)(gi•x) ui)t.

The first term of this expression shows how ui(t) is influenced by tp, the Newton

step in the primal

variables. (I - .Vgi(x)Ttp) is a first order Taylor series approximation ofgi(x)
gi(x)/gi(x + tp).

gi is concave =:> 1/gi is convex: and since gi(x) > 0 =* gi(x)/gi(x + tp), a function
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of t, is convex.

gi(x) > 1 Vgi(x)tp

=g(x + tp) - gi(x)

So multiplying ui by v( - iVgi(x)rtp) attempts, using first order information.,

to account for the

change in gi as x goes to x + tp. keeping uigi(x) and ui(t)gi(x + tp) approximately

equal. However, the inequality above shows the approximation may underestimate

gi(x)/g.(x + tp). that is.

ui 1- gx)I V.i(x)rtp)gi(x + tp) _< uigi(x).

This underestimation may be observed by assuming a linear affine gi(x).

Sgi(x + tp) = gi(x) + Vgi(x)Ttp. Substituting into the formula for ui(t)gi(x + tp),

Sgi(x)1 Vgi(x)Wtp)gi(x + tp)

= u~j (x) 1 Vg.(X)Ttpl I± 1 Vg.(X)Ttp\= \ g)(x) X g-(x)

= uigi(x) (1 (xVg(X)Ttp) 2

= uigi(x) - 1ijgj(x)( Vgi(X)Ttp)2

Since uj > 0 and gi(x) > 0, the last term is always non-positive, and (assuming
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t > 0) equals zero only if Vgi(x)rp = 0. So for linear affine gi(x), the

underestimation occurrs whenever Vgi(x)Tp = 0.

More will be said later about how this underestimation could affect the

performance of the Primal-Dual Algorithm, but for now let us move on to the

second term of

ui(t) = ui(i I ix)g,(x)Ttp)+( ui)t.

To study the role of the term (- ui) t in achieving perturbed

complementary slackness, we let p = 0 =• gi(x + tp) = gi(x).

=> ui(t)gi(x + tp)- (ui +(gx) - ui) t)gi(x) -/I

= (1 -t)uigi(x) - (1 - t)JI

= (1 -t)(uigi(x) -,a)

The second term seeks to decrease Iuigi(x) - I2j by a factor of (1 - t); t 1 reduces

uigi(x) - p Ito zero. But this is predicated on the first term adjusting the value of

ui(t) to account for the change in gi, keeping ui(t)gi(x + tp) = uigi(x). Thus the

terms work together: the second term attacks the current deviation from perturbed

complementary slackness, and the first adjusts the value of ui such that
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ui(t)gi(x + tp) -- uigi(x) so as not to confound the effect of the second term.

V.2 The Effect of the Dual Newton Direction on Convergence

To study how the dual variable Newton step performs in reducing i uigi(x) - [
we use the value of the step length t introduced in the proof of Lemma IV.3,

t = 1/(911p III). Besides guaranteeing a reduction in D(x. 4i), this value of A has

other valuable properties:

1/(91{pIII,) {tpl! III, tpT Htp - 1 (5.1)

The definition of H implies

tprHtp = i V (iMVg�(X)V 9iV).(x)j N tp (5.2)

All the matrices in this summation in (5.2) are positive semi-definite, so for an

arbitrary i E I, we have

I Vgi(x)Ttp 2 (-.-

_ Vgi(x)Ttp< (5.4)
i x ) -- 96
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0 - tprV2gi(x) tp 1 (5.5)

0 < tp V2gi(x) tP < -(3.6)
-- 2gi(x) - 162

o' •TV 2 gi(x) tp < 1 (5.7)

(- g-x) gi(x) - 81"

We are given that gi(x) is a concave quadratic function. Using the definition of

ui(t) and a 2 0 Taylor series expansion of gi(x + tp),

ui(t)gi(x + tp) - = (uigi(x) - /1) 1 - t 1+ Vgi(x)Ttp + tpTV2qj(x) tp

, ,[tpTV2gix) t 1 V.(x tpT 2 g(x)ptp

L uigi(x) T/2

Now define wi = - u gi(x) = uigi(x) - p = p( - "wi)" (Note "ji < 1 always.) To

study the reduction in uigi(x) -/L , consider two cases:

Case 1: uigi(x) - it > 0. This implies wi < 0. Using the inequalities in (5.3)

through (5.7) and dropping terms with the appropriate sign, we develope the

following inequalities.

ui(t)gi(x + tp) - P >- (uigi(x) - P1)(1 - t(1 + 1))+ uigi(x)( -1458 -
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Iterations only occur when 11P 11H > 1. so t 1/(9 llp 11H) • t < 8 Thus.

199

ui(t)gi(x + tp) - /I >Ž /I( ,;i(i )+f( -TT+)±d - W)( - 18

which is clearly a negative lower bound. Now. does this value of t guarantee a

reduction in uigi(x) -- p'?

1 1 ).(_,/ __•

ui(t)gi(x + tp) - P m( - )-t(1 1 + /(1 - i)(1458

<af( - -;i)( - 43t

162 1458)±+/P(1458

To be certain of a reduction in uigi(x) - p, we need to show

P( - -,i)( 1 62 14 583 15) (-w
-=WIo t_ 143 1 < 1

Wj 1 6 2 i 1,458) <1458

If 0 < - wi < -1 we need -143t + < 62 ,o .491 oi

62' 162 1458 1458' or t > 0.048951. So if

I P IIH > 2.27, setting t = 1/( 9 11 piIll) may not give a reduction in uigi(x) - p.
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Case 2: uigi(x) - p < 0. This implies ,'j > 0. Using the inequalities in (.5.3)

through (5.7) and dropping terms with the appropriate sign. we (levelop the

following inequalities.

S

As before. we know t < Thus.

1i(~~( ~tp) < + I

< 19 -& )() ( 4 1 58) < /( 1458)

which is a quite small positive upper bound for reasonable values of /1. Now. does

this value of t guarantee a reduction in uI1ilx) - pI.,

1ij(t)y tx p) - p >-

lit ~ ~ ~ -- •i - I" • ti --ý /I( I -. )

162 1.156, 1

To aIlow for a reduc'tion in i,,,y (x) - 111" we riced to, Show
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H1439 1 k6,-2,t 1458)9

=Z 143t 19 1

(16k-2• + 15 ) > 1.158--

t t>( - 1)(0.014763)

A small value of o'i, say 0 < j :S -L. implies t > 8. Under the structure of the

algorithm, this rules out t = t/(91 p IIt), a value of t necessary for the previous

convergence and complexity proofs. Therefore in this case. if .:i satisfies it's upper

bound of & convergence and polynomial complexity are uncertain. This leads to

the content of the next chapter. where analysis vields a modification to the

algorithm which allows a certain quantifiable reduction in w.
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CHAPTER VI: MODIFYING THE PRIMAL-DUAL ALGORITHM

VI1 Modifying the Dual Variable Newton Direction and Step Size

The previous chapter showed the nature of the Primal-Dual Newton direction

in the dual variables, and the inherent bias and uncertainty in its effect on

reducing l ,-i(x) - p for each i E I. This chapter develops a modification to the

Newton step in the dual variables to remove this bias and uncertainty. We begin

with the simpler case of an arbitiary linear affine gi(x). so that

ui(t)gi(x + tp) - i =

[u(1 - lg gjx)vxtp)+(gx - Ili) I](giAx) + vgj(x)Ttp) - 'U.i( g~))gi(x) U)q

A simple way to modify the dual Newton step would be to adjust the step size t

(computed in the manner of the Primal Variable Algorithm) using information at

hand. Let this adjustment take the form of a parameter ri multiplying the step

size t in uj(t). Then the above equation becomes
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uli(r-t)gi(x + tp) I'-

1- V, x)Yi(X)" ritp) + i(x) -ui) itj (.gi(x) + vgi(x)Ttp) - it.

=(uligq(X) - ,t)( 1 - Tit) - (Uigi(X) - /1)( vgJ~ i(x)TtP)7 t

-U igi(x)(T7i --LVgi(x)Ttp) 2 -(1-.g() vi(x)Ttp)

Now let 7i 7iI With this value we obtain
1+ 1Vqi(x)'"tp

Yi(x)

~( Vgi(X)Ttp)2 -(1_ I ( )gxrP

=>' Ui(r1 t)gi(x + tp) - /I ==

(uigi(x) -P) (l - frit0 - (uigi(x) - ')( Vgz(X)Ttp Tjt

= (uigi(x) - IB( - Tit(I + 1j xVgi(X)Ttp)

= (uligi(x) - PO)( - t).

Thus, multiplying t by fi in the computation of the new value of ui decreases

uligi(x) - li I by a factor of (1 - t) at each inner iteration. (Recall 0 <z t < 1J This

has a powerful implication. Suppose the algorithm is at a point near the trajectory,
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that is, w4,1 +w•< l ip IM/11 < 1ý1 -":; and uigi(x) -p = 0.

iEL. Let T =(1 -0)p. Then uigi(x) --T = uigi(x) -y +O=Op, i ci. If each gi

is linear affine and the algorithm uses the formula ui(T.t), after any given iteration

the value of uigi(x) - p is the same for all i C I. and 1M = H - u4H. where

1 - uigi(x)/p, i G 1. So within an arbitrary outer iteration. the initial common

value of uigi(x) - it is reduced strictly monotonically at each inner iteration.

Furthermore, if any inner iteration returns a step size t = 1, then uigi(x) - /I = 0.,

i C I at each subsequent inner iteration.

This result applies only to linear affine constraints, so the next logical step

would be to attempt a similar result for the more general concave quadratic

constraint. We begin with the general step size multiplier ri used successfully

before.

ui(rit)gi(x + tp) -/I =1u(1 ig(x)l VYi(x) rrtp) (gjx) u l)Tit]

x (gi(x)+ Vgi(x)frtp + -tpTV 2 9i(x)tp) - tt

(uigi(x) - p)(1 - rit) - (uigi(x) - g2) Vgi(x),tp + itpT v2gi" r)tp)Tit (6.1)

(gi(x) 2gi(x)

_uigi(x)(ri(•.•Vgi(x)Ttp)2 1 TV2gi(x)-

(6.2)

-r/q(x) (p •V tpV,,-(x) -- V gi(x)Ttp (6.3)

-izq 2 \ gi(x) ]gi(x) ]]
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The preence o tT V 2 g i(x)-
Te presence of tp-- tp in (6.2) not multiplied bv 7i, coupled with the

possibility that VTgi(x)Tp = 0 means that in general it may not be possible to zero

out (6.2) and (6.3) with the correct choice of r-. But the components containing i

in (6.2) and (6.3) can be made to sum to zero, as follows:

Let T/ = 1 and the following equations obtain.

1 + Vlgi(x)'tp + Itp 9i(X tpýI~)2I qi(x) r

i( gIVgi(x)irtp)2 - (1- -i )( gIVgi(x)TtP)

+-Titp (Tv/( ;tp 1 Vgi(x)Ttp) 0.

ui(T t)gi(x + tp) - i =

/ ( +___ 1 pV 9.(x)
(uigi(x) -,U)41 - r--it + ixVgg(x)Ttp - It T .(x)tP

uigi(x) - 1 TV gi(x) tp

= (uigi(x) - /1)(1 - t) + u1(ltpTV 2gi(x)tp).

The use of T/ has removed some of the uncertainty concerning the reduction of
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uigi(x) - p but a negative bias remains: ui(jtprV 2gi(x)tp)< 0. However, if we

define

ui (tpiV72 gi(x)tp) 1- _ "r_72gi_

___ (2_1_____p gi(x) tptp V-gi(x)t

gi(x) 2 g p

we obtain

(ui(i t) + ±i )gi(x + tp) -/I = ii(fi t)g9(x + tp) - 1 + ji gj(x + tp)

- (uigi(x) -1- t) + uj(ltpTfV2gi(x)tp)- -Uj(tpTV 2 gi(x)tp)

= (uigi(x) --/)(1 - t).

The use of Ti and 3i in this manner removes uncertainty and bias concerning the

reduction of I uigi(x) - i I in the same way as was achieved for the linear affine

gi(x); and when V2gi(x) = 0 for all x (gi is linear affine), -i = 0 and this technique

reduces to the method developed earlier for linear affine gi(x). The following

definitions will allow incorporation of this modification into the Primal-Dual

Algorithm:

±F uj Vgi()T u gix u -iTt + 3i
ui(t, Ti, i)=ui + [--gi(x)N P + ui + i

or in vector-,aatrix notation.
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u(t, 3,•)u + -[-UG-1VgTp + G-ep - u]t +-3

where 3 is an m x 1 vector, the ith entry of which is 37i and 7 is an m x m matrix

equal to diag(T ).

VI.2 A Modified Primal-Dual Algorithm

The Modified Primal-Dual Algorithm (MPDA) is essentially the Primal

Variable Algorithm with the addition of the modified Primal-Dual Newton step in

the dual variables. Other changes have been made so that the requirement of

") < 1/62 is met. Consider the algorithm at the end of an outer iteration for an

arbitrary p > 0. meaning the tolerance ji IjM/- =,- has been met.

Suppose the algorithm has also achieved uigi(x) - p = 0, i E I. This implies w = 0,

-M/, = H, and the tolerance thus becomes li p = 1piP 1H < = "1 It is at this point

in the algorithm that p is decremented. Let )7 denote the decremented value, so

Ti = (1 - 0)y for some 0 E (0., 1). When y is so decremented. w, no longer equals

zero. In fact, for an arbitrary i E I,

1uigi(x) - 1_ 19- ui9i(x)) = 0ft =1--9=•--O

By specifying 0 < 1/63, we ensure that when reducing p to O (1 -) we have

W < 1/62 at the start of the next iteration. Recall that with the modification to

the dual Newton stcp, w is reduced monotonically during the course of an outer
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iteration, and once a step size tzl is achieved the algorithm maintains

ui gi(x) - it = 0. i E I (and therefore w = 0) for the remainder of that outer iteration

until the tolerance is met and I is decremented. If the situation occurs where the

tolerance is met at the end of an outer iteration. but uigi(x) - p 3 0 for some i G I.

the algorithm simply takes one more Primal-Dual Newton step with t = 1,

achieving uigi(x) - It = 0. i E I. and w = 0. By Corollary IV.3 this maintains the

necessary proximity to the central path. y is then decremented to j = (1 - 0)'U

resulting in w = 1/62, and the next outer iteration begins.

111"t

Reduction factor 6 G (0., 1/63]

Tolerance 7 = 1ýfi77Zý. Assume max 1 - uigi(x) < always.
iI - 1 62

T is an accuracy parameter.

x0 C R* is given, as is y <_ 1/T, and u0 > 0, i E I such that lp(xO.Uo,u,) M/, :- r

and ui0gi(x 0 ) - u0 = 0, i E I

begin

x=x0, u= u0,f= P 0

while t > T/2m do

begin outer iteration

while 11 P IIM/p < -r do

begin inner iteration

A = argOmn {mi (xq) s.t. (x + Ap) c R*,

II P IIMi/P - 2wj -+w}
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X Xt x AJ)

u u(A .Y.)

end inner iteration

if max 1- >- 0iEI

begin one extra step

x=x+p

u = u(1,.~.3)

end one extra step

it = (1- O)j

end outer iteration

end

The lemmas and convergence/complexity theorems apply to the Modified Primal-

Dual Algorithm as they did to the Primal Variable Algorithm. The bounds on the

number of iterations two choices of 0 are:

0= o(Q =- OQVInI In(c) ) iterations

0 = 0(1) =, 0(m In(f)I) iterations

and the corresponding computational complexity is:
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O(n,_FiIln(O)1) for I= OW )

O(nam In(E)i) for 0=O(1)

As stated at the end of Chapter 3, if the problem P has only linear affine

constraints, then setting E = 2 - L allows a purification algorithm to find an optimal

vertex with no increase in complexity (see Gonzaga(1992)).

Another significant attribute of the Modified Primal-Dual Algorithm is

convergence of the Lagrangian multipliers to an optimal vector of multipliers, u*.

This results from the way in which the MPDA assumes the behavior of the

standard primal variable SUMT at the end of each outer iteration. Suppose the

algorithm is at the end of an outer iteration for an arbitrary U > 0. Then

uigi(x) =jq, i E 1. Additional modified primal-dual Newton steps will coincide with

standard SUMT Newton steps, and will also maintain uigi(x) = y, i E I. Thus, the

MPDA inherits the Lagrangian multiplier convergence property of SUMT, as

proved in Theorems 25 and 26 of Fiacco and McCormick(1968, 1990).
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CHAPTER VII: LINEAR PROGRAMMING WITH THE MODIFIED

PRIMAL-DUAL ALGORITHM

VII.1 A Review of Anstreicher's Results

In previous chapters we have developed a modification to the Primal-Dual

Newton step which allowed for a guaranteed reduction in the deviation from

perturbed complementary slackness with each Newton step. That reduction in

turn allowed the application of the den Hertog, Roos, and Terlakv(1990) analytical

techniques to prove convergence and polynomial complexity for the Modified

Primal-Dual Algorithm. This chapter will show that the modificationt also allows

us to adapt Anstreicher's results for quadratic programming with the logarithmic

barrier function to linear programming with the Modified Primal-Dual Algorithm.

Thus, we have another way to show polynomial complexity for the Modified

Primal-Dual Algorithm, albeit for a less general class of problems. (An attempt

was made to adapt Anstreicher's results directly to the Primal Variable Algorithm

for small w, as was done with the work of den Hertog, Roos, and Terlaky. Because

of the relatively tight nature of the inequalities in several of the lemmas, however,
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this has not been successful.)

We begin by reviewing Anstreicher's convergence and complexity proofs for

the traditional SUMT logarithmic barrier algorithm applied to a quadratic

program. Such a review allows the reader to see a significantly different approach

to proving polynomality, one that makes important use of the linear algebra

associated with the linear affine censtraints of the quadratic program. We then

show that the Modified Primal-Dual Algorithm, when applied to a linear program.

can be analyzed for convergence and complexity in the same manner as

Anstreicher's treatment of SUMT. The ltrnmas and theorems from

Anstreicher(1990) are presented in this chapter without proof. For the interested

reader, the proofs are in Appendix 1. precisely as developed in Anstreicher(1990)

and Anstreicher et al(1990) with only notational changes to conform to this

dissertation.

Let us define the standard quadratic program (QP) in E' using notation

similar to Anstreicher:

QP: min f(x) == hrx + ixTQx

s.t. Ax-c>0

for b E E', c E E', A an m x n matrix, and Q an n x n symmetric positive semi-

definite matrix. We assume the data is integer with bit length L. and as before the

feasible region R is bounded with a non-empty interior R*. This implies that

m > n and the columns of A are linearly independent. The Wolfe dual of QP is

QD: max bTx + ½xTQx- uT(Ax- c)
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s.t. b +Qx-Aru=o

II > 0

The dual can be simplified. 1 + Qx - A ou = 0 1 ul'A = IT + x'Q

b•x + !x"Qx - ir"Ax +- i=~c = b"x + 1x`Qx - (bT + x"'Q)x + cu

-x TQx + CTu,

Thus we can write the (dial problem as

QD: max d(x.u) XlXQx + cTu

s.t. 1)+ Qx- Aru= 0

Ii > 0

Lemma VIIl: Let x be feasible in QP and (i., fi) be feasible in QD. Then

f(x) - d(i, d) > 0.

Let "z[ denote the ith row of A. We define the logarithmic barrier function

ýP(x, p) for x E R* and p > 0 as before.

D(xy) = t- 2 In(aijx - ci)
i=1

The gradient and Hessian of ,D(x,it) are
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Qx + b in ai

_i l(aix - ci)

The n x n matrix H will again denote the Hessian of Phi. By Lemma 111.2. H is

positive definite. ('(x./i) is continuous on R* and goes to + oc at the boundary of

R. so the compactness of R guarantees (D(x,[) has a minimizer x(p) E R*.

For an arbitrary ip > 0. Anstreicher employs three different measures of the

distance of a point x E R* from the central path x(/). Some notational definitions

are necessary: s - Ax - c. S -diag(s), s (1/s1 , 1/1S, .. /. )T = S - le.

The primal variable Newton step is Pz H -H 1 V•(x.j), and p, =- Ap, is the step

in s resulting from the Newton step p, in x. The three measures are:

(m) IlkSu -m

(1) A5(x.p) uATu = b + Qx

(2) S - 1p8

(3) II Px IIH

To better understand these measures, it may be helpful to apply them to the

familiar problem P from previous chapters: IIJSu -e is the same as 1uTg - 1, (3)

is the norm of the Newton step in the primal variables with respect to the Hessian

of P(x,•), and (2) is the same as (3) but ignoring the contribution of the objective

function f(x).
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Lemma VII.2: Let x E R* and P > 0 be arbitrary. Then

S - Ips 2 _< Px.l'! < 6(x.I)2.

Lemma VII.3: Given x E R*. suppose S - 'ps < 1. Let X = x + Px- s + Ps,

ands =diag(T). Let H =V, (3,/'), py H - 'V-1 (Yp), and p- Apy.

Then Y C- R* and

11ý 1-: ltpY < 1P12 < 6(y "p) < IS - Ips2: 1 IPzxlt < 6(x.P)2

Lemma VII4: If z EE * and i~iI ill, - 1, then ,I(x.,I) -,,(x(g)4,u) _

Lemma VII.5: If x G R* and J1Px1 1H < 1. then

I Px fjH( 1 + I Px ~!)•-
f(x)- f(x(.))j• 1 -IpI + 1I

The algorithm used by Anstreicher and Anstreicher et al is similar to that of

den Hertog, Roos, and Terlaky(1990). It begins with a feasible interior point x0

and an initial barrier parameter value yo0 = 2O(L). From point xk, the algorithm

conducts linesearches along a sequence of Newton steps until it reaches a point

where 11 px 11H r. This point becomes xk + 1,Yk is decremented to

lk+1 = I -9)k for some fixed 0 E (0,1), and the process starts over again. The

algorithm terminates when 11 Px IH < r and miik f = 2 -(L), from which the
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optimal solution may be found in O(m 3 ) operations. Convergence and complexity

of the algorithm are proven by Anstreicher with the following two theorems.

Theorem VII.1: Let z* denote the minimum value of f(x) for problem QP. After

O(L/0) outer iterations. the algorithm obtains y = 11k such that muk < 2 - O(L) and

apoint x=x+1 such that f(x)-z*(< I- _r)--/) 2  L

The proof of Theorem VII.2 requires the following lemma proving a guaranteed

reduction in 'D( ..p) along the Ncwton direction. It is similar to the den Hertog,

Roos. and Terlaky Tavlor series expansion result used in the proof of Lemma IV.1.

In that case, the proof was quitc long and detailed, and was omitted. Anstreicher's

proof for this lemma is somewhat shorter, and is included in Appendix 1.

Lemma V1I.6: Let A - 1 Then

4D(x,P) -4(x + A Px4l) > IIP IIH - 1n(1 + I1 Px 1iH)

Corollary VII.6: Let r < Px 11lla < Then a pure Newton step (A = 1) obtains

ýD(xY) - D(x + P.,Y) A = 2 + ln(1 - r) + 7 > 0

We can now proceed to Theorem V11.2, which bounds the number of inner
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iterations per outer iteration.

Theorem VII.2: Let A = - ln(1 + 7-), EP = 7. Ef - T(- +± and N denote
1-7r2  1--

the number of inner iterations required for an arbitrary outer iteratation. Then N

is bounded as:

N< 1 Om(9m 2Ef '.mT) +ED)

Combining Theorem VII.1 and VII.2 gives the complexity result we seek: the total

number of Newton iterations required by the algorithm to solve problem QP is

bounded by

¾ 1m -7+ O(L).

The choice of 0 has much the same influence as in the results of den Hertog, Roos,

and Terlaky:

0 = O-L) =: 0(Qm- L) iterations

0 = 0(1) =: O(mL) iterations.

In Corollary VII.6 it was shown that a pure Newton step would achieve a

guaranteed reduction in P( ,p) if 7 <pI[ P -. To ensure that 1P1 II- 1 <
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throughout the algorithm, note that Theorem VII.2 implies that

1 0 (9m + 2Ef I1TT) +( Eq,

is the maximum reduction possible for any step size, while Lemma VII.6 shows a

reduction of 0.5 - In(1.5) > .0945 is guaranteed with the correct choice of step size

for 1P IIH >1. Thus it suffices to restrict the maximum possible reduction to less

than .0945 to ensure that 1 Px 11H < 1. This may be done by choosing 0 such that

0 (0m + 2Ef!f-i) + ET, < .0945. (7.1)10

For small values of 7 both Ef and ED approach zero, so 0 such that 92m < .0945, or

0 < .3/ý-m will suffice. This result will be important in later analysis.

This concludes the review of Anstreicher's complexity results for QP; the

remaining portion of this chapter will show that these results may be applied to

linear programming with the Modified Primal-Dual Algorithm to achieve the same

complexity bound.

VII.2 Another Polynomial Complexity Result for the Modified Primal Dual

Algorithm

To remain consistant with the notation used in the development of the

Modified Primal-Dual Algorithm, let us redefine the linear program. (LP) in a

manner identical to the definition of problem P in Chapter III, with the additional
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restriction that the constraints be linear affine:

LP: min b"x

s.t. gj(x) > 0 and linear affine, i E I

x G E

All restrictions on the feasible region for P apply to LP. This LP is the problem

we will address throughout the rest of this chapter.

In Chapter III this thesis introduced the matrix MI and its relationship to the

Hessian of the logarithmic barrier function. Of particular interest is

V~xq) M uiijg(x)) [vgi(x) %7i(X)Tj= ' gqi(x)l

where uj > 0, i E I. As before, let H denote the Hessian of D( • ,). It is clear that

if uigi(x) -,u = 0 for all i E I, then H(x,1i) = 1M(xp).

Lemma VII.7: Let uigi(x) - it = 0 for all i E I, and let 0 E (0,1) be given. If

j = (1 - 0)/, then

'M(x,ii) = (1 - ) H(x,,u)

Proof: From (3.7) we have

'M(X, m ui~g.(X) [Vgj(X)Vgi(X)T~

1( ) gi(x) 2 j
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Using uigi(x) = IL and 0)= (1 -0),, we get

Mx(x'7 ) = Z1l !LH)[L )Vg(x) ("",i=1 [ i1x

which completes the proof. []

A Linear Progamming Version of the MPDA. The algorithm begins with a

feasible interior point x . an initial barrier parameter value It0 = 2O(L). uJ > 0 such

that uigi(x0 ) - t0 = 0 for all i E L and 11 IIPIM/ -- IIPIIH -r. Let th outer

iteration be arbitrary. Starting from point xk, the algorithm takes a series of pure

Primal-Dual Newton steps in the primal variables, that is,

- (M(xk)> 1VkI(xPk), j= 1. 2, 3,...

At each such step, each uj, i E I is updated to uj(1,Fi ,0). These inner iterations

continue until the algorithm reaches a point where I1Px IIH :- r, say the ]thiteration.

Then xk + 1 = xk., ik is decremented to Ik + 1 = (1 _ 9 ),uk for some fixed 9 E (0,1)3

satisfying (7.1), and the process starts over again. The algorithm terminates when

I!Pxil -<rand miik <e = 2 -O(L)

The initial Primal-Dual Newton step in the primal variables will be identical in

direction to that generated by the logarithmic barrier function, but will be shorter

by a factor of (1 - 0). Therefore, the reduction A in t( ,p) from this first iteration
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will be

S>_ (1 - 0) 2 +ln(1- (1- ) )+ (1 - )r . (7.2)

Since -r is small and positive, the right hand side of (7.2) is strictly positive for

9 = 0, equals zero for 0 = 1. and is strictly monotonically decreasing with respect to

9 on (0, 1). Thus, ..X > 0 for 9 E (0.1 ). After the initial pure Primal-Dual Newton

step in the primal variables. M/p = H and the exact results of Anstreicher are

obtained. (It is also permissible to conduct linesearches along the Primal-Dual

Newton directions after the first inner iteration's pure Primal-Dual Newton step.

The decrease in 0(.. p1) will then be guaranteed by Lemma VII.6 instead of

Corollary VII.6.) Therefore. the complexity results proved by Theorems VII.1 and

VII.2 for the logarithmic barrier function applied to QP apply for this version of

the Modified Primal-Dual Algorithm applied to LP.
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CHAPTER VIII: SATISFYING THE INITIAL CONDITION REQUIREMENTS

We begin this chapter by stating the general problem to be addressed and key

notation used.

min f(x)

sAt. gi(x)>ý:0, i EI = (1, 2,...m)

where -f(x) and gi(x), i G (1, 2, . . ., m) are concave quadratic functions.

Standard Notation and Definitions

S={x C- En Ig (x) > 0, i E I}

P* -- {x E En I gi(x) > 0, i E I}

lb (Xt)=f(x) - ME ln(gi(x)).
i=1
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Vf(x) -n Vg.(x)

gif(x)

H(x.,) = V2D(x./I) +-) m V'qi(x)Vgi(x), V2gi(x)

~l gi(x) 2  gO(x)

(Note: when f(x) is linear. V 2f(x) vanishes.)

n I g (x)x

p(x,u)--- M-lib -b" __EVgi(x)/gi(x)j -(I> 1-I-(xqi)

When clarity is not affected, let p p(x,upi), H E H(x,/A), and M - M(x,u,1i).

jIPIIH - (pTHp)l/ 2

l1P IIM/- (PT(1M)p)1/2

For some zEE1 let the region R, =- {xE'E I f(x) < z, x f R} be bounded with a non-

empty interior. Then for some positive integer r we define the analytic center of

R, as the point in R, whi-h solves

max (z-f(x))rH gi(x).
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This dissertation has presented two implementations of the Modified Primal-

Dual Algorithm (MPDA), demonstrating two ways to show polynomial complexity

for the algorithm. In each of these implementations. the analysis assumes a fairly

restrictive initial condition: namehix. a known initial point (x0 ,u0 ) and barrier

parameter p0 > 0 such that the following conditions hold:

x° € •*(8.1)

<p(x0 .u0 .p,) ., < T (8.2)

/10 < 2 (8.3)

Recall that if u09g(x 0 ) - u = 0. i G I, then (8.2) is equivAlent to !p(x0.u0,p H < T.

Also, (8.3) applies only for prob!Um_ LP, that is, when the objective function is

linear and the constraints linear £mne. In practice. one may not receive such a

conveniently structured prod e:.: Fortunately, it is a straightforward task to meet

these conditions given an arbitrary starting point i E E". Our first concern is

finding a feasible value of x.

VIII.1 Feasibility

The following method for achieving feasibility is a version of the Two Phase

method often used in linear programming. For a detailed discussion of that
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application, see Bazaraa. Jarvis. and Sherali(1990). Given J£, let T denote the set

of ;.ndicies of constraints that are non-positive for ft. Now define a set of artificial

variables ai. j E V'. and a variable z C E1 . Let aj = - gj() + I CjE.

zO = max(aj) + 1. and formulate the foilowing problem FP.

FP: mim z

s.t. gi(x) > 0, i C I - T'

g9(x) + a j > 0. j EY

z > (ii. i C

Z > - 1

Bv construction. FP has a solution and (i. a0. zo) is strictly feasible for FP.

Furthermore, FP has a linear objective function and concave quadratic constraints,

so the algorithm of den Hertog. Roos, and Terlaky can solve FP in polynomial

time. The number of constraints remains O(m), and if we assume m = 0(n), the

computational complexity is the same as for problem P. In reality, the algorithm

may be terminated as soon it obtains a negative value of z. The associated value of

x is strictly feasible for P and may be denoted SX. If the minimum z is non-

negative. then P is infeasible. With ' C R*, we have satisfied (8.1), so we now

proceed to satisfying (8.2) and (8.3), known as centering.

Another approach to finding an interior point is found in Fiacco and

McCormick(1968, 1990). Let i C E' be arbitrary, and define the sets

S {i I gi(i) - 0, i E I} and T {i I gi(i5) > 0, i C I}. Now minimize

U(xpk) = : gi(x) +,ikZ ln(gi(x))

zES iET
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for Pf'k0 as k -+ + oc. When in the course of this minimization a new constraint is

strictly satisfied, its index is moved from S to T, U(xqik) is redefined accordingly,

and the process is begun again. This continues until all constraints are strictly

satisfied or it is shown no interior point exists.

VIII.2 Centering

A straightforward method for initial centering is found in McCormick(1991b),

l)ased oil the work of Huard(1967) and Fiacco(1979). Given that -x' e R* (possibly

from the application of the feasibility methodology above), define V0 - {x E En I

f(x) < f( ý' )} n R*. One then finds an approximate solution to the problem

m
max [-f(x) + f( i )]flgi(x). (8.4)
x E V\=

This is equivalent to finding an approximate solution to

m - ln(- f(x) + f( ' )]- Zln(gi(x)). (8.5)
xEV 0  i=E

Let x0 approximately minimize (8.5). Then we have

Vf(x°) m Vg-(x 0 )
[-f(x0) + f( ý )J = gi(x°)

approximately equal to zero. Now let po = f( •' ) -f(x 0 ), and we have (x0 , p0 ) that

approximately solves
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min 4'(x"U0).xm *

With the (familiar) definition of u0 = p 0/g)(xO), and given a good enough

approxi.nate solution, we have (x0, u0A A0) which will satisfy (8.2).

Although this two step approach is a standard one and very workable, we now turn

to a method which combines the feasibility and centering operations and makes use

of a polynomial-time analytical centering algorithm. The method is based on Jarre

(1991), which demonstrated the polynomality of a method of analytical centers

when applied to our problem P. The presentation here will nuc include detail on

the polynomality of the centering algorithm, which is beyond the scope of this

research--readers interested in such detail are better served by reading the original

paper. Rather. we show a scheme adapted from Jarre (1991) which allows the

application of his algorithm to finding (x0 , u0, b 0) satisfying the initial conditions

of the MPDA.

VIII.5 Combined Feasibility and Centering

We i 1ake the following definitions:

di =g gi(O) - 1, i E I

i(x,7) -= gi(x) - -di, i C- I
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In.
i=1WM + I-X Vgi(0)

ý,, + I(x,•') _= wM + x+V

This gives us

i(0,1) = 1, i E (1, 2 .... m+1)

m+lV 1ý(01) =0. (8.6)

i=1 ~Ol

Now let

R(-yy,) = {x E E' I ?i(x,y) > 0, i E 1, m+ I(X,V) > 0}.

for some fixed pair (-y,v) such that -y E E1 , v < oc. Since R is a bounded convex

polytope and R(7,v) has as constraints perturbations of all the constraints forming

R, (-y,v) must be bounded (Fiacco and McCormick(19P60, 1990), Theorem 24).

The point x = 0 is an element of R(1,1) so IR(1,1) is -ion-empty. In fact, (8.6)

shows that x=0 is the analytical center of R(1,1). We now make two successive

applications of the analytical centering algorithm, tie first with a strictly

monotonically increasing sequence {vk}Too with vo = 1, and the second with a

strictly monotonically decreasing sequence {fk 1 jo with yo0 = 1. The first

application of the algorithm "backs off" the m+lth constraint until it no longer has

any significant effect on the analytic center, and the second application decreases

the perturbations to the first m constraints until R closely approximates R, and
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thus the resulting close approximation of the analytical center of 6 is a close

aproximation of the analytical center of R. In this way, two applications of a

polynomial analytical centering algorithm yield a a close aproximation of the

analytical center of R, denoted x0. which implies

M Vgq(x 0 )

i=1 (x

is nearly zero. All that remains is to then select a large value of p0 such that

10 <_ 20(L) so that for problem P.

V x0,z0) b _ VIg,(x 0 )

-- p0 i=i gi(x 0 )

remains close to zero, and the usual definition of ui -=pO/gi(xO) yields (x0 , u0 , p0 )

satisfying the initial conditions in (8.1) through (8.3).
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CHAPTER IX: SUMMARY AND RECOMMENDATIONS FOR FUTURE

RESEARCH

IX.1 Summary of Results

We begin this summary by restating the problem to be solved along with

important notational conventions.

Standard Notation and Definitions

General Constrained Optimization Problem:

mi f(x)
e E E

s.t. gi(x)Ž_O, iEI-(1,2,. im)

R- {x E En I gi(x) > 0, i E I}
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{*- x c E' gi(x) > 0, i E I)

- ln(gi(x)) for x E R* and u > 0.

Vf(x) M vg,(x)
2 .=1 gi(x)

\72VDfXx) m Vgi(x)V7gi(x), V72 g.(x)
H E V A'xlI Il g 2(x )

(Note: when f(x) is linear, V2f(x) vanishes.)

m
L(x,u) -=f(x) - Zuigi(x)

VL(x,u) = Vf(x) - uiVgi(x) = 0, ui 0, i EI

M m ~Vgi(x)Vgi(x), V2gi(x)~ o *adu .ieI

p ~ 1[b f LEVgi(x)/gi(x)1 = (m
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lPllii (p'rHp)1/
2

(P 1im )P, 1x1
w max 1U g(x)

p ,•IPu • PM/, < 1 -+w 11pi11 for w < 1 and f(x) linear

This dissertation began with a review of concepts fundamental to constrained

optimization with interior point methods and current research in the field. That

was followed by a detailed description of the Primal-Dual Algorithm developed by

McCormick(1991b). Recall the basic idea of that algorithm is to use Newton's

method with a step size line search to find solutions to the following set of

equations:

VL(x,u) = 0

uigNx -,U Ik = O, i E I

where x E R* and ui > 0, i E L. These equations are solved for a sequence of
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positive l1k such that {lk}J.O as k-* + oc. The first major research result, in

Chapter IV, was showing the similarity of p, the primal variable Newton direction

from the Primal-Dual Algorithm, with the Newton direction - H - 1V-'(xji) for the

standard SUMT with the logarithmic barrier function. This similarity was

exploited by constructing a Primal Variable Algorithm using the search direction p,

and limiting the divergence of p from - H - 1V1P(xu) through the measure w. It

was shown that by keeping w small (w < 1/62), the SUMT polynomiality results of

den Hertog, Roos. and Terlaky(1990) could be used as a template to construct a

convergence and polynomial complexity proof for the Primal Variable Algorithm.

In the Primal Variable Algorithm analysis, w < 1/62 was specified. Ensuring

that w meets that criterion is another matter. The degree to which

uigi(x) _/Yk = 0, i E I is violated during the course of the Primal-Dual Algorithm is

very dependent on the way the ui variables change. Thus, Chapter V contained

research into the performance of the dual variable Newtcn direction for an

arbitrary ui, particularly when using a step size generated by the Primal Variable

Algorithm. The result was two cases, determined by the sign of uigi(x) - ak. Both

cases revealed that the maintenance of w < 1/62 is not certain when movement in

the dual variables ui, i E I, according to the dual Newton direction, is appended to

the Primal-Variable Algorithm. Thus, further study was required to establish

polynomiality for the Primal-Dual Algorithm.

In Chapter VI, research centered on developing a modification to the dual

variable Newton step for an arbitrary ui to guarantee w < 1/62. First, the simpler

case of a linear affine gi(x) lead to the discovery that a simple step size change
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using existing information could guarantee a monotone decrease in Iuigi(x)- itk-

with each Newton step. Extending this result to the more general quadratic gi(x)

required both a step size change and an additive term to the dual Newton step,

again with existing information. With a monotone decrease in Iugk(x)J- at

each Newton step now ensured for i E I, movement in the dual variables according

to the modified to the dual Newton step was added to the Primal Variable

Algorithm, resulting in the Modified Primal-Dual Algorithm (MPDA). The

MPDA is essentially the original Primal-Dual Algorithm with the modified dual

Newton step, using P(x,,i) as a merit function. The modified dual Newton step

and small decrements to ui guarantee e <_ 1/62, so convergence and polynomiality

follow from the Primal Variable Algorithm.

The effect of the modification to the dual Newton step had further

consequences. In Chapter VII, analysis revealed that when the MPDA is applied

to a linear program (LP), the polynomiality results of Anstreicher(1990) apply

directly. Anstreicher's work is remarkable for showing polynomiality of the original

SUMT of Fiacco and McCormick for quadratic programming (QP) when initial

conditions and parameter values are correctly specified. When a linear objective

function is specified to conform to our MPDA analysis, QP becomes LP, and it is

shown that Anstreicher's proofs extend to the MPDA. Hence, we have another

convergence and polynomial complexity result, although for a less general class of

problem.

The research of this dissertation concludes in Chapter VIII, which addressed

the problem of finding an initial point (x0 ,u0qi 0 ) which meets the fairly restrictive
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initial conditions used by both den Hertog, Roos, and Terlaky(1990) and

Anstreicher(1990). The conditions are feasibility, namely x0 E R*, u0 > 0, and

/10 > 0; and centering, meaning 1p(x 0 ,u0 ,ji0 ) 11H is small. Techniques to achieve

feasibility are covered by many authors--feasibility results from Bazaara. Jarvis,

and Sherali(1990) and Fiacco(1979) apply, and were covered in Chapter VIII. The

chapter also presented a centering method from McCormick(1991b), based on the

work of Huard(1967) and Fiacco(1979), and concluded with a combined feasibility

and centering technique adapted from Jarre(1991).

IX.2 Future Research

It is possible that the results developed here for convex programming with

quadratic constraints could be extended to smooth convex programming. We

define smooth convex programming by way of a relative Lipschitz condition set

forth in Jarre(1991). Let x and x + h in R* and z E E' be arbitrary. Then we say

the relative Lipschitz condition is satisfied if for some M > 0, the Hessian of each

gi(x) satisfies the following:

~z1V2gi(x + h) _ V2gj(x)] Z~ M11 h Iif(,)zTV2gi(x)z

where

M Vgi(x)Vgi(x) T  V2gi(x)
i-=--1 gi(x) 2  gi(x)
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The convergence and complexity results for the logarithmic barrier function in den

Hertog, Roos, and Terlaky(1990) extend to smooth convex programs, with M

entering into the complexity polynomial. It should be straightforward to make the

same extension to the Modified Primal-Dual Algorithm.

Another research area is the choice of merit function. For the general

constrained optimization problem

min f(x)

s.t. gi(x) > 0, i G I.

there are two candidate functions which incorporate primal and dual variables

mentioned in McCormick(1991a),

MF1 (xu~p) f(x) - u ln(gi(x)) +l [uigi(x) - yiln(ujgj(x))], and

MF2(x,u,it) VL(x,u)T M - 1VL(x,u) + m u - 2
i=1

for x E R*, u > 0, and y > 0, where the matrix M is defined as in earlier chapters:

1  Vg(x)Vgi(x)2 V~gi(x) 'for x E R and ui > 0. i E I.
ui~I~J~ gi(x)2  gijx)
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MF1(x,u,y) has the interesting property in that a stationary point with respect to x

and u for MF1(x,uji) satisfies the equations motivating the Primal-Dual Algorithm

(McCormick(1991b)):

VL(x,u) = 0

uigi(x) - I = 0. i G I.

Successful use of such a merit function might reduce or eliminate the need for a

modification to the Primal-Dual Algorithm to show polynomiality.

Finally, only limited mention has been made in this dissertation to

convergence of the Lagrangian multipliers. Further research into their behavior,

particularly in the presence of degeneracy or alternate optimal solutions, is in

order. Within the context of quadratic programming, alternate optimal solutions

are possible whenever the objective function has a singular Hessian. that is, the

Hessian is not positive definite.
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APPENDIX 1

This appendix contains the proofs for the lemmas and theorems from

Anstreicher. which are presented without proof in Chapter 7.

Lemma VII.1: Let x be fe-sible in QP and (5', i) be feasible in QD. Then

f(x) - d(i. 51) > 0.

Proof: f(x) - d(i, d) = b'x + 1xTQx + ½TQxZ- CTf. Since (:. i) is dual feasible,

bT= fTA _ iTQ, ,

f(x) - d(i, a) = IxTQx + aTAx - iTQx + 1•TQ•-- iTc

- fT(Ax - c) + jxTQx _ -TQX + ½5-TQk

Now define s - Ax - c.

f(x) - d(i, i) = iiTS +1 xTQx- _TQX + iTQi

104



- 'rs + I(xT _ S•T )Qx + I -TQ(i _ x)

= fiTs + ½(x- _ )TQx - ½(x -C)TQi

Thhe feasibility of x in QP implies s > 0. We also have ii > 0 and Q positive

definite. Thus

f(x) -_ ,1t., i)= -Is -+ I(x _-.)TQ(x -_ 4) > 0

which proves the lemma.

Lemma VII.2: Let x e R* and u > 0 be arbitrary. Then
ýS- lps j2_< IlPxjt <- (xc4*)2'

Proof: I pxI, =pT(LQ + ATS - 2 A)p PT(ATS - 2A)px = S- 2 for the first

inequality.

Now let u = u(xqi) which we define as the minimizing value of u resulting in

6(x,p). Therefore Aru = b + Qx, and

2 = VqS(X, t)TH- 1VýP(x,p)
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= (Qx + '- A's - 1)rF(1Q + A"'S - 2 A)- 1(Qx± + A) -A")

- Il))TI-Q + A TS 2A) -(AT(LX -s))

= Sn-e)s A(IQ + A TS - 2 A)- lATrS -]

Lu =ý (76(x,,)
2

where or is the nmaximurn eigenvalue of

s - 'A(-LQ + A'S -2 A)-- 'A-S 'S (AL)

To evaluate o, we see that

[S - 'A(IQ +~ ATS - 2 A)- 'A TS- I]

= S 'A(-Q + ATS - A)- •A TS 'S ' 1A(Q + ATS - 2 A)- A TS -1

The maximum eigenvalue of (A1,2) is less than or equal to that of the following

matrix (Al.3)

S,- A(IQ + ATS- 2A) I(IQ + ATS- 2AXIQ + ATS- 2A)- 'ATS'- 1
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S - 1.A,(-LQ + A'S - A) - 'ATS -1

which is (A1.1). Since the maximum eigenvalue of the square of (A1.1) is less than

that of (Al.1), namely a. we must have a < 1. which implies 1pxII•/< 6(x.,1) 2 and

completes the proof of the lemma.

Lemma VIl.3: Given x E R*. suppose S-ps)< 1. Let Y = x+ p, g =s+Ps,

and S diag(s). Let H = .2-7bj( ,u), p_ = - i - 1V4I(R p), and p-, = Apy.

Then -x E R* and

1-g - Ip -]P_ 1' <- g P( ) <-1 S -ip I 12 :ý 11Pxl12 -< 6 (x;)

Proof: -9 = s + p, S(e + S - tp,). Since 1S - Ips < 1, the absolute value of each

element of the vector S - 1p, must be less than 1, and each element of (e + S - IpN)

is strictly positive. The vector s is also strictly positive. so -9 must be as well and

therefore - E R*. Now consider

6(R yj) m rin I S u -e
ul ATu =b+Qi 11-A

Let u satisfy ATu = b + Qx. (One such value is u = u(xI).) Then

R= x - H - "71V(x,/p)

_ (-I +A ATS -
2 A )-I(Qx±+ b -ATS - 1
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-- x - (-Q +A TS - 'A)-' TS - 1( )

Some manipulation yields

IQ(x- .g) IQ(IQ + ATS- 2A)-'ATS(- (-e)

and using the fact that !Q(-Q + ATS -2A)- I- ATS - 2A(IQ + ATS - 2 AA 1

we obtain

- ATS-I-• -Su - )-ATS - I- AAIQ + ATS - 2A)-i(b+Qx ' AT5 -i)

- ATS- - e) - ATS - -
1A)H --V (xT-)

- ATS - -u_ A ATS - 1(S -' lI T A-1b+p)-A ,-1

- ATS - 1(-- e + S- ps) (A1.4)

From (A1.4) we see that

Q7= Qx- ATu + yATS - I(e - S - 1ps)
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= - b + ,uATS - I(C- S - lps) (A1.5)

so by setting = S-(e-S-ps) we have ATU = b + QY. Now let

P= diag(ps) and let (S - lps)2 denote the vector of the squares of the elements of

S- 1 ps. Then

ul ATu = b + Qx,

= (S +Ps) S-l(e-S- fps)-e

11( + S - 1PXe - S- 1p,) - e

= e -S- lps+S-lps-S-- 1PsS- 'ps-e

=l(S- lps)2

11 S - lps P

This proves 6(Y ,p) <_ S - 1ps r, and the remaining inequalities are a result of

Lemma VII.2.

2
Lemma VII.4: Ifx E R* and I1P.I11 < 1, then 4i(x,p) - 4)(x(p),p) < 11P--11

109IIPa II .
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Proof: For an arbitrary fixed it > 0, I(P ,i) is convex, so

,ID(x,/tt) - +Px ) - ( P ,) - P-1(x, )TPx -- iP i

Let x0  x, and define {x0, x . x-, . . . as the sequence of points obtained by

generating a succession of N'wton steps starting at x. From (A1.6) and Lemma

VII.3.

- D(xGu),,) = (N(xi,') b 4(xz + 1kl))

1'=O

00 +
i=0

i=O

2
< It PX 11H
-1 - Il Px PI

thus proving the lemma.

Lemma VII.5: If x E RR* and IPx: IIH< 1, then

f~x) f(X0)) 1 Px 11H( 1 + 11 Px 11H)•

-IjPxljff

Proof: From the convexity of f( -) we get

Vf(x)TpX < f(x + PX) - f(x) < Vf(x + px)T pX (A1.7)
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If the right hand and left hand sides of (A1.7) can be appropriately bounded. the

lemma can be proved. Beginning with the left hand side and the fact that

Vf(x) = Qx + b = piVb(x,y) + /ATS - le we see

vf(x)Tp= IzVý(x./l)Tpx + PeTS - iAp_,

= V4(x.p)rpX + PeTS - 1ps. (A1.8)

Now VD(xp)rp= - H - -'(I(x,/•)) V4(x.,P)TH - IHH - IV!•(x,/)

-[P2 f. From the Cauchy-Schwartz Inequality and Lemma VII.2 we have

eTS - Ips>_ -- 1eTS-1p PS> -- 11e11S-lpsl>__ -ý-•IlpxIIH.

Substitution into (A1.8) yields

Vf(x)Tp > P1 p12 11 Px 11H" (Al.9)

Using (A1.5) and noting that Y = x + px, we can bound the right hand side of

(A1.7) as follows:

Vf(x + pz)Tpx = (QR + b)Tpx

= IpTATS- 1(e - S - lps)
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--uYeT(S- lAp) pTATS-IS-p

= YeT(S-IpS)- U1 S-ps P2

< "M- 11iPx IIH- (A1.10)

We can now subsitute (A1.9) and (A1.10) into (A1.8) to achieve

- UIL PxII H - III, < f(x + Px) - f(x) _< u,- IPI 11H

- "- 11 Pp IIH- _ -m 11 Px IIH < f(x + Px) - f(x) •!_' 1Px IIH + Y-ImN 1I Px II•/

If(x + Px) - f(x) 1:_ yi- IPx IIH(+ 1 +IPxIIH) (AI.1l)

Again let x0 = x and {x0 , x1 , x2, . . .I denote the sequence of points obtained by

generating a succession of Newton steps starting at x. Applying (A1.11) and

Lemma VII.3 we have

1f(x) - f(x(P))] = E_(f(xi) -f(xi +'))I

-< f(xi) -f(xi +1)[

i=O

_< E "-M[p• 1 +l P I[ +.

i=0
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Since (I + Ii px IIH) Ž (1 +II px I) for all i > 0 this becomes

0C

If(x) - f(x(p•))l < U-ýf(1 + IIPx III) E-II Px II[,
2'=0

-
1 -IIPxIIH

which proves the lemma.

Theorem VII.1: Let z* denote the minimum value of f(x) for problem QP. After

O(L/0) outer iterations, the algorithm obtains p = yk such that mk <_ 2 - O(L) and

apoint x =xk + such that f(x)1-+z* + r 2-(

Proof: The duality gap at x(Qk) is mruk, and at the end of the kth outer iteration
we have [IPIIg -- r. This along with Lemma VII.5 gives us

f(x) - z*= f(x(k)) - z* + f(x) - f(x(pk)) _• mpk + +-- -- k;-mk

< mpk( 1 + TO( + 7) ( . 2
- rN-I ] (AI.12)

To show mpk < 2 - O(L) note that muk = m(l - 9)k0, and po0 < 2 O(L) is assumed.

So we need a value of k such that
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m(1 - )k2 0(L) < 2 - O(L)

Taking logarithms,

kln(1 -)±+ O(L) +In(m) < - O(L)

k > O(L) + ln(m)
-_ln(1 - 0)

and since ln(m) :_ O(L) and <_ - In(1 - 9), we obL L

k > o(•)

which completes the proof.

Lemma VII.6: Let - 1 ThenS+ 11 px IIH'

O~ ,•) • x+ P-',P) ý! 11 Px IH - lIn(1 + 11 px IH)

Proof: The Taylor series expansion for ýD(x + Apzp) is

I2 T 00)

4(x + Apx,y) = 4I(x,,u) + AVI(x,,)Tpx + hA• p Hpx + E tj (A1.13)
2 j1=3

where tj denotes the jth term of the Taylor expansion. For j > 3, the jth term may

be computed as
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tj E ) (S P

where (S - Ip4)I denotes the jth power of the ith component of S l ps. Thus
tj =: ( -1ij AJ( (S lsi j/2 =Aj 1 S-I lis

j l S i i=1 =-

and by Lemma VII.2,

AJ
tjl< Ipx•. (A1. 14)

Expanding the linear and quadratic terms of the Taylor series and again using

Lemma VII.2. we obtain

AVD(xjLyrp., +A 2 pTHp = - AV4)(xy )TH IHH - iVD(x,p) + h 2pTHp=

2( 2 )up 1 - (A1.15)

Substituting (A1.14) and (A1.15) into (A1.13) yields

-t(x + Apx,IL) _< 4)(x,/p) + (-A + IA2 ) 11p Px 12 + -"A. 11 pz ]J/ (A1.16)

j= 3 3

Furthermore, the Taylor series expansion of - ln(1 - Allpx IH) is

-- 1n( - All Px IIH) - - In(l) + All PI IIH + A (Pz 11H)2 +(p)[ P[ (A[[ P1IIH) 4 
±...
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which implies

E~ LII- l x IIH)-l( - A llx 'NpxIIH #Allpx IIH)2 (A 1.17)J=3 1 1p n

Now we substitute (A1.17) into (A1.16) and find

4(x + Apx,p) <_ 4S(xy) - All P Iý - ln(1 - Allp IIIH)- AllIPxzII

The right hand side is minimized by A = A 1 so
!+ 11 Px IIHs

4'(x,,u) - 4(x +- PxY) > 11-x I IH(1 + 1 Px 1111) - n(1 -• AI P II)/

= 11 Px IH - ln(1 + 11~ pxH

which proves the lemma.

Corollary VII.6: Let r < I1PxIIH 1 Then a pure Newton step (A = 1) obtains

(x,) -- D(x + PxP) > A = r2 + In(1 - r) + T > 0

Proof: Using a step size of A = 1, from Lemma V11.6 we have

, (x + Pz,P) • 1D(x,p) -II Pz 6H - In('1 - 1 Px IIH) -Ii Pz IIH

or equivalently
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P(x-'P) - ,D(x + P",P) >-IlPx IH + In(l 1 -IPx 111)+ 11 Px IH' (A1. 18)

The right hand side of (Al. 18) is positive and increasing for 0 < IIPxIIH 1, so

0 < 7 < Px Iliii _ implies

0 <A =72 + In(1 - 7) + r •< 4(x,,) - 4)(x + px,/p)

which completes the corollary.

Theorem VII.2: Let A = r- In(l + r), E's Ef- .... andN denote

the number of inner iterations required for an arbitrary outer iteratation. Then N

is bounded as:

N _< 1 _-- (Om + 2Efg-) + E$)

Proof: Anstreicher's proof is a generalization of a proof by Gonzaga for the linear

case. The (k + 1)st outer iteration begins with the point (xk,,ik) and

1P(xkPk - ')x H < 7 for H = H(xkpk - 1). Let N denote the number of inner

iterations. Lemma VII.6 shows that each inner iteration will decrease 4)( •,Pek) by

at least A. Following the N iterations, we have xk + 1 with (xk + 1,uk)x IH 5 7 for

H = H(xk + 1,Lk). So

AN < 4 ý(xk,/ k) - 1i(xk + 1, k). (Al.19)
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The right hand side can be bounded. From the definition of 4ý(x,it),

x - I + f(x) f(x)4,(xil) Y •(,k - I/

+ f( x_)•(x,•k- V +tI-ik- 1

and this leads to

ý(xk,,tk-) _ ,(xk + 1.t1k) = ,i(xki k - 1) - 4(xk + I.I k - 1)

+ ( 0) f(xk) f(xk + 1)). (A1.20)

Analyzing (f(xk) - f(xk + 1)), we use the the fact that xk and xk + I are

approximately centered with respect to ,yk - 1 and tk respectively, and Lemma

VII.5 to obtain

f(xk) _ f(xk + 1) _ f(x(pk - 1)) + Ef Pk - 1,l- _ f(x(,1k)) + Ef ký-m

- f(x(Pk - 1)) _ f(x(,Uk)) + E1 (2 - 0)tk - 1,-.

Recall the dual objective function d(x,u) from Lemma Vii., and u(xA) from

Lemma VII.2. Since u(x(y),JL) is dual feasible, with the monotonicity with respect

to it of the dual objective function we have

f(xk) _ f(xk + 1) < f(x(,- 1)) - d(x(Ik - 1)), u(x(,k - 1),•k - 1)
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+ d(x(p,*). u(x(,Ik)) - f(x(pk)) + Ef( 2 - O)p k - Iifi

f(x(P k - 1) _(l(X( jk - 1). u(x(Ilki- 1).,ki- 1))

-(f(x(llk))- d(x(Pk), u(x(pk).Ilk)) )+ H frk- 1,ý-

k - -k - I ,-

_n inipk±2Eftk I

Snlk - 1  1  + mk - I + 2mf -kI+ ± -

P pk - l(Om + 2Ef-,[). (A1.21)

We can now use Lemma VII.4 with 1p.l1ii :H< r. Xk nearly centered with respect to

Yk - 1, and x(,k - 1) minimizing 4j(x.,ik - 1) to achieve

4)(xkpuk- 1) _ .,p(xk + 1 luk- 1) = p(xkp~k - 1) _ C5xG' tk - 1),M.k - 1)

+ ¢(x(Iik-l),k-1) _ -(xk + 1,± - - 1)

< D(xk, Pk - 1) _ 4(x(pk - 1),Mk - 1)

< Et (A1.22)

Finally, substitution of (A1.21) and (A1.22) into (A1.20) yields
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1D(xk./uk) - (x + 1 k) E+ 1 P k,_ E,.+k - l(m + 2Ef1Tm)

S1- O(m + 2Ef-M) + Eq,

and substitution of this inequality into (Al.19) proves the theorem.
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